pricing / app.py
shollercoaster's picture
Update app.py
22d28e4
raw
history blame contribute delete
708 Bytes
from flask import Flask, request, jsonify
import dynamic_pricing
import joblib
app = Flask(__name__)
loaded_rf_model = joblib.load("random_forest_model.pkl")
@app.route('/', methods=['POST'])
def predict_amt():
try:
# Get data from the request
data = request.get_json()
# Use your machine learning model to make predictions
prediction = loaded_rf_model.predict(data) # Replace with your model code
# Return the prediction as a JSON response
return jsonify({'prediction': prediction})
except Exception as e:
return jsonify({'error': str(e)}), 400
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)