Upload 3 files
Browse files- llama_app.py +390 -0
- llama_readme.md +78 -0
- llama_requirements.txt +6 -0
llama_app.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import warnings
|
| 5 |
+
warnings.filterwarnings("ignore")
|
| 6 |
+
|
| 7 |
+
class LlamaAddressCompletion:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.model_name = "shiprocket-ai/open-llama-1b-address-completion"
|
| 10 |
+
self.model = None
|
| 11 |
+
self.tokenizer = None
|
| 12 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
self.load_model()
|
| 14 |
+
|
| 15 |
+
def load_model(self):
|
| 16 |
+
"""Load the Llama model and tokenizer"""
|
| 17 |
+
try:
|
| 18 |
+
print("Loading Llama 3.2-1B Address Completion model...")
|
| 19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 20 |
+
|
| 21 |
+
# Load model with appropriate settings for the space
|
| 22 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
self.model_name,
|
| 24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 25 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 26 |
+
trust_remote_code=True
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
if not torch.cuda.is_available():
|
| 30 |
+
self.model = self.model.to(self.device)
|
| 31 |
+
|
| 32 |
+
self.model.eval()
|
| 33 |
+
print("✅ Model loaded successfully!")
|
| 34 |
+
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"❌ Error loading model: {str(e)}")
|
| 37 |
+
raise e
|
| 38 |
+
|
| 39 |
+
def extract_address_components(self, address, max_new_tokens=150):
|
| 40 |
+
"""Extract address components using the model"""
|
| 41 |
+
if not address.strip():
|
| 42 |
+
return "Please provide an address to extract components from."
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
# Format prompt for Llama 3.2-1B-Instruct
|
| 46 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
| 47 |
+
|
| 48 |
+
Extract address components from: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 49 |
+
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
# Tokenize
|
| 53 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 54 |
+
|
| 55 |
+
# Move inputs to the same device as the model
|
| 56 |
+
device = next(self.model.parameters()).device
|
| 57 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 58 |
+
|
| 59 |
+
# Generate
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
outputs = self.model.generate(
|
| 62 |
+
**inputs,
|
| 63 |
+
max_new_tokens=max_new_tokens,
|
| 64 |
+
temperature=0.1,
|
| 65 |
+
top_p=0.9,
|
| 66 |
+
do_sample=True,
|
| 67 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 68 |
+
repetition_penalty=1.05
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Decode only the new tokens
|
| 72 |
+
input_length = inputs['input_ids'].shape[1]
|
| 73 |
+
generated_tokens = outputs[0][input_length:]
|
| 74 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
+
return response.strip()
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
return f"Error processing address: {str(e)}"
|
| 80 |
+
|
| 81 |
+
def complete_partial_address(self, partial_address, max_new_tokens=100):
|
| 82 |
+
"""Complete a partial address"""
|
| 83 |
+
if not partial_address.strip():
|
| 84 |
+
return "Please provide a partial address to complete."
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Format prompt for address completion
|
| 88 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
| 89 |
+
|
| 90 |
+
Complete this partial address: {partial_address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 91 |
+
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
# Tokenize
|
| 95 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 96 |
+
|
| 97 |
+
# Move inputs to the same device as the model
|
| 98 |
+
device = next(self.model.parameters()).device
|
| 99 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 100 |
+
|
| 101 |
+
# Generate
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
outputs = self.model.generate(
|
| 104 |
+
**inputs,
|
| 105 |
+
max_new_tokens=max_new_tokens,
|
| 106 |
+
temperature=0.2,
|
| 107 |
+
top_p=0.9,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 110 |
+
repetition_penalty=1.05
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Decode only the new tokens
|
| 114 |
+
input_length = inputs['input_ids'].shape[1]
|
| 115 |
+
generated_tokens = outputs[0][input_length:]
|
| 116 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 117 |
+
|
| 118 |
+
return response.strip()
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return f"Error completing address: {str(e)}"
|
| 122 |
+
|
| 123 |
+
def standardize_address(self, address, max_new_tokens=150):
|
| 124 |
+
"""Standardize an address format"""
|
| 125 |
+
if not address.strip():
|
| 126 |
+
return "Please provide an address to standardize."
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
# Format prompt for address standardization
|
| 130 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
| 131 |
+
|
| 132 |
+
Standardize this address into proper format: {address}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 133 |
+
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
# Tokenize
|
| 137 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 138 |
+
|
| 139 |
+
# Move inputs to the same device as the model
|
| 140 |
+
device = next(self.model.parameters()).device
|
| 141 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 142 |
+
|
| 143 |
+
# Generate
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
outputs = self.model.generate(
|
| 146 |
+
**inputs,
|
| 147 |
+
max_new_tokens=max_new_tokens,
|
| 148 |
+
temperature=0.1,
|
| 149 |
+
top_p=0.9,
|
| 150 |
+
do_sample=True,
|
| 151 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 152 |
+
repetition_penalty=1.05
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Decode only the new tokens
|
| 156 |
+
input_length = inputs['input_ids'].shape[1]
|
| 157 |
+
generated_tokens = outputs[0][input_length:]
|
| 158 |
+
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 159 |
+
|
| 160 |
+
return response.strip()
|
| 161 |
+
|
| 162 |
+
except Exception as e:
|
| 163 |
+
return f"Error standardizing address: {str(e)}"
|
| 164 |
+
|
| 165 |
+
# Initialize the model
|
| 166 |
+
print("Initializing Llama Address Completion system...")
|
| 167 |
+
try:
|
| 168 |
+
llama_system = LlamaAddressCompletion()
|
| 169 |
+
print("System ready!")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f"Failed to initialize system: {e}")
|
| 172 |
+
llama_system = None
|
| 173 |
+
|
| 174 |
+
def extract_components_interface(address_text):
|
| 175 |
+
"""Interface function for component extraction"""
|
| 176 |
+
if llama_system is None:
|
| 177 |
+
return "❌ Model not loaded. Please check the logs."
|
| 178 |
+
|
| 179 |
+
result = llama_system.extract_address_components(address_text)
|
| 180 |
+
return f"**Input:** {address_text}\n\n**Extracted Components:**\n{result}"
|
| 181 |
+
|
| 182 |
+
def complete_address_interface(partial_address):
|
| 183 |
+
"""Interface function for address completion"""
|
| 184 |
+
if llama_system is None:
|
| 185 |
+
return "❌ Model not loaded. Please check the logs."
|
| 186 |
+
|
| 187 |
+
result = llama_system.complete_partial_address(partial_address)
|
| 188 |
+
return f"**Partial Address:** {partial_address}\n\n**Completed Address:**\n{result}"
|
| 189 |
+
|
| 190 |
+
def standardize_address_interface(address_text):
|
| 191 |
+
"""Interface function for address standardization"""
|
| 192 |
+
if llama_system is None:
|
| 193 |
+
return "❌ Model not loaded. Please check the logs."
|
| 194 |
+
|
| 195 |
+
result = llama_system.standardize_address(address_text)
|
| 196 |
+
return f"**Original:** {address_text}\n\n**Standardized:**\n{result}"
|
| 197 |
+
|
| 198 |
+
# Sample data
|
| 199 |
+
sample_addresses = [
|
| 200 |
+
"C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
|
| 201 |
+
"Villa 141, Geown Oasis, V Kallahalli, Off Sarjapur, Bengaluru, Karnataka, 562125",
|
| 202 |
+
"E401 Supertech Icon Indrapam 201301 UP",
|
| 203 |
+
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
|
| 204 |
+
"Flat 201, MG Road, Bangalore, Karnataka, 560001"
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
partial_addresses = [
|
| 208 |
+
"C-704, Gayatri Shivam, Thakur Complex",
|
| 209 |
+
"Villa 141, Geown Oasis, V Kallahalli",
|
| 210 |
+
"E401 Supertech Icon",
|
| 211 |
+
"Shop No 123, Sunshine Apartments",
|
| 212 |
+
"Flat 201, MG Road, Bangalore"
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
+
informal_addresses = [
|
| 216 |
+
"c704 gayatri shivam thakur complex kandivali e 400101",
|
| 217 |
+
"villa141 geown oasis vkallahalli off sarjapur blr kar 562125",
|
| 218 |
+
"e401 supertech icon indrapam up 201301",
|
| 219 |
+
"shop123 sunshine apts andheri w mumbai 400058"
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
# Create Gradio interface
|
| 223 |
+
with gr.Blocks(title="Llama Address Intelligence", theme=gr.themes.Soft()) as demo:
|
| 224 |
+
gr.Markdown("""
|
| 225 |
+
# 🦙 Llama 3.2-1B Address Intelligence
|
| 226 |
+
|
| 227 |
+
Powered by a fine-tuned Llama 3.2-1B model specialized for Indian address processing. This lightweight model can extract components, complete partial addresses, and standardize informal address formats.
|
| 228 |
+
|
| 229 |
+
**Model:** [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion)
|
| 230 |
+
""")
|
| 231 |
+
|
| 232 |
+
with gr.Tab("📋 Extract Components"):
|
| 233 |
+
gr.Markdown("Extract structured components from complete addresses")
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column(scale=1):
|
| 236 |
+
extract_input = gr.Textbox(
|
| 237 |
+
label="Enter Address",
|
| 238 |
+
placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101",
|
| 239 |
+
lines=3
|
| 240 |
+
)
|
| 241 |
+
extract_btn = gr.Button("🔍 Extract Components", variant="primary")
|
| 242 |
+
|
| 243 |
+
gr.Markdown("### Sample Addresses:")
|
| 244 |
+
extract_samples = []
|
| 245 |
+
for addr in sample_addresses:
|
| 246 |
+
btn = gr.Button(addr, size="sm")
|
| 247 |
+
btn.click(fn=lambda x=addr: x, outputs=extract_input)
|
| 248 |
+
extract_samples.append(btn)
|
| 249 |
+
|
| 250 |
+
with gr.Column(scale=1):
|
| 251 |
+
extract_output = gr.Markdown(
|
| 252 |
+
value="Enter an address and click 'Extract Components' to see structured breakdown."
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
extract_btn.click(
|
| 256 |
+
fn=extract_components_interface,
|
| 257 |
+
inputs=extract_input,
|
| 258 |
+
outputs=extract_output
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
extract_input.submit(
|
| 262 |
+
fn=extract_components_interface,
|
| 263 |
+
inputs=extract_input,
|
| 264 |
+
outputs=extract_output
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
with gr.Tab("✨ Complete Address"):
|
| 268 |
+
gr.Markdown("Complete partial or incomplete addresses using AI")
|
| 269 |
+
with gr.Row():
|
| 270 |
+
with gr.Column(scale=1):
|
| 271 |
+
complete_input = gr.Textbox(
|
| 272 |
+
label="Enter Partial Address",
|
| 273 |
+
placeholder="e.g., C-704, Gayatri Shivam, Thakur Complex",
|
| 274 |
+
lines=3
|
| 275 |
+
)
|
| 276 |
+
complete_btn = gr.Button("🚀 Complete Address", variant="primary")
|
| 277 |
+
|
| 278 |
+
gr.Markdown("### Sample Partial Addresses:")
|
| 279 |
+
complete_samples = []
|
| 280 |
+
for addr in partial_addresses:
|
| 281 |
+
btn = gr.Button(addr, size="sm")
|
| 282 |
+
btn.click(fn=lambda x=addr: x, outputs=complete_input)
|
| 283 |
+
complete_samples.append(btn)
|
| 284 |
+
|
| 285 |
+
with gr.Column(scale=1):
|
| 286 |
+
complete_output = gr.Markdown(
|
| 287 |
+
value="Enter a partial address and click 'Complete Address' to see the AI completion."
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
complete_btn.click(
|
| 291 |
+
fn=complete_address_interface,
|
| 292 |
+
inputs=complete_input,
|
| 293 |
+
outputs=complete_output
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
complete_input.submit(
|
| 297 |
+
fn=complete_address_interface,
|
| 298 |
+
inputs=complete_input,
|
| 299 |
+
outputs=complete_output
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Tab("📐 Standardize Format"):
|
| 303 |
+
gr.Markdown("Convert informal or messy addresses into proper standardized format")
|
| 304 |
+
with gr.Row():
|
| 305 |
+
with gr.Column(scale=1):
|
| 306 |
+
standardize_input = gr.Textbox(
|
| 307 |
+
label="Enter Informal Address",
|
| 308 |
+
placeholder="e.g., c704 gayatri shivam thakur complex kandivali e 400101",
|
| 309 |
+
lines=3
|
| 310 |
+
)
|
| 311 |
+
standardize_btn = gr.Button("📏 Standardize Format", variant="primary")
|
| 312 |
+
|
| 313 |
+
gr.Markdown("### Sample Informal Addresses:")
|
| 314 |
+
standardize_samples = []
|
| 315 |
+
for addr in informal_addresses:
|
| 316 |
+
btn = gr.Button(addr, size="sm")
|
| 317 |
+
btn.click(fn=lambda x=addr: x, outputs=standardize_input)
|
| 318 |
+
standardize_samples.append(btn)
|
| 319 |
+
|
| 320 |
+
with gr.Column(scale=1):
|
| 321 |
+
standardize_output = gr.Markdown(
|
| 322 |
+
value="Enter an informal address and click 'Standardize Format' to see the cleaned version."
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
standardize_btn.click(
|
| 326 |
+
fn=standardize_address_interface,
|
| 327 |
+
inputs=standardize_input,
|
| 328 |
+
outputs=standardize_output
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
standardize_input.submit(
|
| 332 |
+
fn=standardize_address_interface,
|
| 333 |
+
inputs=standardize_input,
|
| 334 |
+
outputs=standardize_output
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
with gr.Tab("ℹ️ Model Information"):
|
| 338 |
+
gr.Markdown("""
|
| 339 |
+
## 🦙 About Llama 3.2-1B Address Completion
|
| 340 |
+
|
| 341 |
+
### Model Specifications
|
| 342 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
| 343 |
+
- **Parameters**: 1.24B parameters
|
| 344 |
+
- **Model Size**: ~2.47GB
|
| 345 |
+
- **Architecture**: Causal Language Model (Autoregressive)
|
| 346 |
+
- **Max Context**: 131,072 tokens
|
| 347 |
+
- **Precision**: FP16 for GPU, FP32 for CPU
|
| 348 |
+
|
| 349 |
+
### Key Features
|
| 350 |
+
- **Lightweight**: Only 1B parameters for fast inference
|
| 351 |
+
- **Specialized**: Fine-tuned specifically for Indian addresses
|
| 352 |
+
- **Versatile**: Handles extraction, completion, and standardization
|
| 353 |
+
- **Efficient**: Optimized for real-time applications
|
| 354 |
+
- **Context-Aware**: Understands relationships between address components
|
| 355 |
+
|
| 356 |
+
### Supported Address Components
|
| 357 |
+
- **Building Names**: Apartments, complexes, towers, malls
|
| 358 |
+
- **Localities**: Areas, neighborhoods, sectors
|
| 359 |
+
- **Pincodes**: 6-digit Indian postal codes
|
| 360 |
+
- **Cities**: Major and minor Indian cities
|
| 361 |
+
- **States**: All Indian states and union territories
|
| 362 |
+
- **Sub-localities**: Sectors, phases, blocks
|
| 363 |
+
- **Road Names**: Streets, lanes, main roads
|
| 364 |
+
- **Landmarks**: Notable reference points
|
| 365 |
+
|
| 366 |
+
### Use Cases
|
| 367 |
+
- **E-commerce**: Auto-complete checkout addresses
|
| 368 |
+
- **Forms**: Intelligent address suggestions
|
| 369 |
+
- **Data Cleaning**: Standardize legacy address databases
|
| 370 |
+
- **Mobile Apps**: On-device address processing
|
| 371 |
+
- **APIs**: Real-time address validation services
|
| 372 |
+
|
| 373 |
+
### Performance Tips
|
| 374 |
+
- Use lower temperatures (0.1-0.3) for factual outputs
|
| 375 |
+
- Keep prompts under 512 tokens for optimal speed
|
| 376 |
+
- Process in batches for high-throughput scenarios
|
| 377 |
+
- Works best with Llama chat format prompts
|
| 378 |
+
""")
|
| 379 |
+
|
| 380 |
+
gr.Markdown("""
|
| 381 |
+
---
|
| 382 |
+
**Powered by:** [Llama 3.2-1B Address Completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion) |
|
| 383 |
+
**License:** Apache 2.0 |
|
| 384 |
+
**Developed by:** Shiprocket AI Team
|
| 385 |
+
|
| 386 |
+
This model demonstrates the power of lightweight LLMs for specialized address intelligence tasks.
|
| 387 |
+
""")
|
| 388 |
+
|
| 389 |
+
if __name__ == "__main__":
|
| 390 |
+
demo.launch()
|
llama_readme.md
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Llama Address Intelligence
|
| 3 |
+
emoji: 🦙
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Llama 3.2-1B Address Intelligence Demo
|
| 14 |
+
|
| 15 |
+
This Space demonstrates the capabilities of [shiprocket-ai/open-llama-1b-address-completion](https://huggingface.co/shiprocket-ai/open-llama-1b-address-completion), a fine-tuned Llama 3.2-1B model specialized for Indian address processing.
|
| 16 |
+
|
| 17 |
+
## What it does
|
| 18 |
+
|
| 19 |
+
This application showcases three main capabilities:
|
| 20 |
+
|
| 21 |
+
1. **Component Extraction**: Parse addresses into structured components (building, locality, pincode, etc.)
|
| 22 |
+
2. **Address Completion**: Complete partial or incomplete addresses using AI
|
| 23 |
+
3. **Format Standardization**: Convert informal addresses to proper standardized format
|
| 24 |
+
|
| 25 |
+
## Features
|
| 26 |
+
|
| 27 |
+
- **Lightweight**: Only 1.24B parameters for fast inference
|
| 28 |
+
- **Specialized**: Fine-tuned specifically for Indian address patterns
|
| 29 |
+
- **Versatile**: Handles multiple address intelligence tasks
|
| 30 |
+
- **Interactive**: Three separate tabs for different use cases
|
| 31 |
+
- **Real-time**: Optimized for quick responses
|
| 32 |
+
|
| 33 |
+
## How to use
|
| 34 |
+
|
| 35 |
+
### Component Extraction
|
| 36 |
+
1. Go to the "Extract Components" tab
|
| 37 |
+
2. Enter a complete address
|
| 38 |
+
3. Click "Extract Components" to see structured breakdown
|
| 39 |
+
|
| 40 |
+
### Address Completion
|
| 41 |
+
1. Go to the "Complete Address" tab
|
| 42 |
+
2. Enter a partial address
|
| 43 |
+
3. Click "Complete Address" to see AI completion
|
| 44 |
+
|
| 45 |
+
### Format Standardization
|
| 46 |
+
1. Go to the "Standardize Format" tab
|
| 47 |
+
2. Enter an informal or messy address
|
| 48 |
+
3. Click "Standardize Format" to see cleaned version
|
| 49 |
+
|
| 50 |
+
## Example addresses
|
| 51 |
+
|
| 52 |
+
- **Complete**: C-704, Gayatri Shivam, Thakur Complex, Kandivali East, 400101
|
| 53 |
+
- **Partial**: C-704, Gayatri Shivam, Thakur Complex
|
| 54 |
+
- **Informal**: c704 gayatri shivam thakur complex kandivali e 400101
|
| 55 |
+
|
| 56 |
+
## Model Information
|
| 57 |
+
|
| 58 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
| 59 |
+
- **Parameters**: 1.24B
|
| 60 |
+
- **Model Size**: ~2.47GB
|
| 61 |
+
- **Max Context**: 131K tokens
|
| 62 |
+
- **License**: Apache 2.0
|
| 63 |
+
|
| 64 |
+
## Supported Components
|
| 65 |
+
|
| 66 |
+
The model can handle:
|
| 67 |
+
- Building names, localities, pincodes
|
| 68 |
+
- Cities, states, sub-localities
|
| 69 |
+
- Road names, landmarks
|
| 70 |
+
- Various Indian address formats
|
| 71 |
+
|
| 72 |
+
## Performance
|
| 73 |
+
|
| 74 |
+
Optimized for:
|
| 75 |
+
- Real-time applications
|
| 76 |
+
- Mobile/edge deployment
|
| 77 |
+
- High-throughput processing
|
| 78 |
+
- Low memory usage
|
llama_requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
transformers>=4.36.0
|
| 3 |
+
gradio>=4.44.0
|
| 4 |
+
accelerate>=0.25.0
|
| 5 |
+
numpy>=1.21.0
|
| 6 |
+
tokenizers>=0.15.0
|