Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +566 -0
- int_to_doc_id.pkl +3 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qdrant_client import QdrantClient
|
2 |
+
from qdrant_client.models import VectorParams, Distance
|
3 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
4 |
+
from datasets import load_dataset
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import time
|
8 |
+
from tqdm import tqdm
|
9 |
+
import os, pickle
|
10 |
+
import gradio as gr
|
11 |
+
from gradio_client import Client
|
12 |
+
from math import log2
|
13 |
+
|
14 |
+
# =====================
|
15 |
+
# PARAMETERS
|
16 |
+
# =====================
|
17 |
+
retrieval_n = 50
|
18 |
+
num_queries = 10
|
19 |
+
docs_n = 100000
|
20 |
+
batch_size = 1000
|
21 |
+
embedding_models = ["all-MiniLM-L6-v2"]
|
22 |
+
rerank_models = [
|
23 |
+
"cross-encoder/ms-marco-MiniLM-L-6-v2",
|
24 |
+
"cross-encoder/ms-marco-TinyBERT-L-6",
|
25 |
+
#"cross-encoder/nli-deberta-v3-base-biomed", # biomedical NLI fine-tune
|
26 |
+
#"ncbi/MedCPT-Cross-Encoder-msmarco" # biomedical passage reranker
|
27 |
+
]
|
28 |
+
|
29 |
+
collection_name = "trec_covid"
|
30 |
+
qdrant_url = os.getenv("QDRANT_URL", "http://localhost:6333")k_values = [1, 3, 5, 10, 20]
|
31 |
+
|
32 |
+
# =====================
|
33 |
+
# LOAD DATA
|
34 |
+
# =====================
|
35 |
+
print("Loading datasets...")
|
36 |
+
corpus = load_dataset("BeIR/trec-covid", "corpus")
|
37 |
+
queries = load_dataset("BeIR/trec-covid", "queries")
|
38 |
+
qrels = load_dataset("BeIR/trec-covid-qrels", split='test')
|
39 |
+
|
40 |
+
print(f"Preparing corpus dict from first {docs_n} docs...")
|
41 |
+
corpus_docs = corpus['corpus'][:docs_n]
|
42 |
+
corpus_dict= {}
|
43 |
+
for i in tqdm(range(len(corpus_docs['_id'])), desc="Corpus dict build"):
|
44 |
+
corpus_dict[corpus_docs['_id'][i]] = corpus_docs['text'][i]
|
45 |
+
doc_ids_set = set(corpus_dict.keys())
|
46 |
+
|
47 |
+
print("Building qrels dictionary...")
|
48 |
+
qrels_dict = {}
|
49 |
+
for row in tqdm(qrels, desc="Processing qrels"):
|
50 |
+
qid = int(row['query-id'])
|
51 |
+
if qid not in qrels_dict:
|
52 |
+
qrels_dict[qid] = {}
|
53 |
+
if row['corpus-id'] in doc_ids_set:
|
54 |
+
qrels_dict[qid][row['corpus-id']] = int(row['score'])
|
55 |
+
|
56 |
+
filtered_qids = [qid for qid in qrels_dict.keys() if len(qrels_dict[qid]) > 0][:num_queries]
|
57 |
+
|
58 |
+
print(f"Filtering and loading {len(filtered_qids)} queries...")
|
59 |
+
queries_list = []
|
60 |
+
for qid in tqdm(filtered_qids, desc="Loading queries"):
|
61 |
+
filtered_query = queries['queries'].filter(lambda x: x['_id'] == str(qid))
|
62 |
+
if len(filtered_query) > 0:
|
63 |
+
queries_list.append((qid, filtered_query[0]['text']))
|
64 |
+
|
65 |
+
avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 2]) for rel in qrels_dict.values()])
|
66 |
+
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")
|
67 |
+
|
68 |
+
|
69 |
+
# =====================
|
70 |
+
# METRICS FUNCTIONS
|
71 |
+
# =====================
|
72 |
+
def recall_at_k(relevant, retrieved, k):
|
73 |
+
relevant_set = set(relevant.keys())
|
74 |
+
retrieved_k = set(retrieved[:k])
|
75 |
+
return len(relevant_set.intersection(retrieved_k)) / len(relevant_set) if relevant_set else 0
|
76 |
+
|
77 |
+
def precision_at_k(relevant, retrieved, k, rel_threshold=1):
|
78 |
+
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
|
79 |
+
retrieved_k = retrieved[:k]
|
80 |
+
return sum(1 for doc in retrieved_k if doc in relevant_set) / k
|
81 |
+
|
82 |
+
def dcg_at_k(rels, k):
|
83 |
+
return sum((2**rel - 1) / np.log2(idx + 2) for idx, rel in enumerate(rels[:k]))
|
84 |
+
|
85 |
+
def ndcg_at_k(relevant_scores, retrieved_ids, k):
|
86 |
+
retrieved_rels = [relevant_scores.get(doc_id, 0) for doc_id in retrieved_ids[:k]]
|
87 |
+
ideal_rels = sorted(relevant_scores.values(), reverse=True)[:k]
|
88 |
+
ideal_dcg = dcg_at_k(ideal_rels, k)
|
89 |
+
actual_dcg = dcg_at_k(retrieved_rels, k)
|
90 |
+
return actual_dcg / ideal_dcg if ideal_dcg > 0 else 0
|
91 |
+
|
92 |
+
def average_precision(relevant, retrieved, rel_threshold=1):
|
93 |
+
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
|
94 |
+
hits = 0
|
95 |
+
sum_prec = 0.0
|
96 |
+
for i, doc_id in enumerate(retrieved):
|
97 |
+
if doc_id in relevant_set:
|
98 |
+
hits += 1
|
99 |
+
sum_prec += hits / (i + 1)
|
100 |
+
return sum_prec / len(relevant_set) if relevant_set else 0
|
101 |
+
|
102 |
+
def reciprocal_rank(relevant, retrieved, rel_threshold=1):
|
103 |
+
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
|
104 |
+
for i, doc_id in enumerate(retrieved):
|
105 |
+
if doc_id in relevant_set:
|
106 |
+
return 1 / (i + 1)
|
107 |
+
return 0
|
108 |
+
|
109 |
+
def success_at_k(relevant, retrieved, k, rel_threshold=1):
|
110 |
+
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
|
111 |
+
return int(any(doc in relevant_set for doc in retrieved[:k]))
|
112 |
+
|
113 |
+
# =====================
|
114 |
+
# METRICS EVALUATION FUNCTION
|
115 |
+
# =====================
|
116 |
+
def evaluate_metrics(results_data, qrels_dict, k_values):
|
117 |
+
rows = []
|
118 |
+
for model_name, data in results_data.items():
|
119 |
+
recalls = {k: [] for k in k_values}
|
120 |
+
precisions = {k: [] for k in k_values}
|
121 |
+
ndcgs = {k: [] for k in k_values}
|
122 |
+
success = {k: [] for k in k_values}
|
123 |
+
maps = []
|
124 |
+
mrrs = []
|
125 |
+
retrieval_times = data.get("retrieval_times", [])
|
126 |
+
rerank_times = data.get("rerank_times", [])
|
127 |
+
|
128 |
+
print(f"Evaluating metrics for {model_name} ...")
|
129 |
+
for i, (qid, retrieved, rerank_scores) in enumerate(tqdm(zip(data["qids"], data["retrieved"], data["rerank_scores"]), total=len(data["qids"]), desc=f"Metrics {model_name}")):
|
130 |
+
relevant = qrels_dict.get(qid, {})
|
131 |
+
if rerank_scores:
|
132 |
+
sorted_docs = [doc for doc, score in sorted(zip(retrieved, rerank_scores), key=lambda x: x[1], reverse=True)]
|
133 |
+
else:
|
134 |
+
sorted_docs = retrieved
|
135 |
+
|
136 |
+
for k in k_values:
|
137 |
+
recalls[k].append(recall_at_k(relevant, sorted_docs, k))
|
138 |
+
precisions[k].append(precision_at_k(relevant, sorted_docs, k))
|
139 |
+
ndcgs[k].append(ndcg_at_k(relevant, sorted_docs, k))
|
140 |
+
success[k].append(success_at_k(relevant, sorted_docs, k))
|
141 |
+
|
142 |
+
maps.append(average_precision(relevant, sorted_docs))
|
143 |
+
mrrs.append(reciprocal_rank(relevant, sorted_docs))
|
144 |
+
|
145 |
+
avg_retrieval_time = np.mean(retrieval_times) if retrieval_times else 0
|
146 |
+
avg_rerank_time = np.mean(rerank_times) if rerank_times else 0
|
147 |
+
|
148 |
+
row = {"Model": model_name}
|
149 |
+
for k in k_values:
|
150 |
+
row[f"Recall@{k}"] = round(np.mean(recalls[k]), 4)
|
151 |
+
row[f"Precision@{k}"] = round(np.mean(precisions[k]), 4)
|
152 |
+
row[f"NDCG@{k}"] = round(np.mean(ndcgs[k]), 4)
|
153 |
+
row[f"Success@{k}"] = round(np.mean(success[k]), 4)
|
154 |
+
row["MAP"] = round(np.mean(maps), 4)
|
155 |
+
row["MRR"] = round(np.mean(mrrs), 4)
|
156 |
+
row["AvgRetrievalTime(s)"] = round(avg_retrieval_time, 4)
|
157 |
+
row["AvgRerankTime(s)"] = round(avg_rerank_time, 4)
|
158 |
+
rows.append(row)
|
159 |
+
return pd.DataFrame(rows)
|
160 |
+
|
161 |
+
# =====================
|
162 |
+
# Encoding + Upload
|
163 |
+
# =====================
|
164 |
+
|
165 |
+
def encode_and_upload():
|
166 |
+
client = QdrantClient(url=qdrant_url, api_key=os.getenv("eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.4a-XqSJIvuhW6_IO8kKpRir9k6NfWH7yY3NcZciHx-4"))
|
167 |
+
|
168 |
+
for embedding_model in embedding_models:
|
169 |
+
print(f"Encoding corpus with embedding model {embedding_model} ...")
|
170 |
+
embedder = SentenceTransformer(embedding_model)
|
171 |
+
|
172 |
+
corpus_ids = list(doc_ids_set)
|
173 |
+
corpus_texts = [corpus_dict[doc_id] for doc_id in tqdm(corpus_ids, desc="Encoding corpus texts")]
|
174 |
+
|
175 |
+
# Normalize embeddings for cosine similarity
|
176 |
+
vectors = embedder.encode(corpus_texts, normalize_embeddings=True).tolist()
|
177 |
+
|
178 |
+
global doc_id_to_int, int_to_doc_id
|
179 |
+
doc_id_to_int = {doc_id: i for i, doc_id in enumerate(corpus_ids)}
|
180 |
+
int_to_doc_id = {i: doc_id for doc_id, i in doc_id_to_int.items()}
|
181 |
+
|
182 |
+
# Create collection only if it doesn't exist
|
183 |
+
if not client.collection_exists(collection_name):
|
184 |
+
print(f"Creating collection '{collection_name}' ...")
|
185 |
+
client.create_collection(
|
186 |
+
collection_name=collection_name,
|
187 |
+
vectors_config=VectorParams(size=len(vectors[0]), distance=Distance.COSINE)
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
print(f"Collection '{collection_name}' already exists. Skipping creation.")
|
191 |
+
|
192 |
+
# Check already uploaded points
|
193 |
+
existing_ids = set()
|
194 |
+
scroll_res, _ = client.scroll(collection_name=collection_name, with_payload=False, limit=100000)
|
195 |
+
existing_ids = {point.id for point in scroll_res}
|
196 |
+
print(f"Already stored {len(existing_ids)} points in '{collection_name}'.")
|
197 |
+
|
198 |
+
# Prepare points for only missing IDs
|
199 |
+
new_points = []
|
200 |
+
for doc_id, vec in zip(corpus_ids, vectors):
|
201 |
+
pid = doc_id_to_int[doc_id]
|
202 |
+
if pid not in existing_ids:
|
203 |
+
new_points.append({"id": pid, "vector": vec, "payload": {"text": corpus_dict[doc_id]}})
|
204 |
+
|
205 |
+
print(f"Uploading {len(new_points)} new points to collection '{collection_name}' ...")
|
206 |
+
for i in tqdm(range(0, len(new_points), batch_size), desc="Upserting points in batches"):
|
207 |
+
batch = new_points[i:i + batch_size]
|
208 |
+
client.upsert(collection_name=collection_name, points=batch)
|
209 |
+
|
210 |
+
# Preview first 5 stored docs
|
211 |
+
preview, _ = client.scroll(collection_name=collection_name, limit=5, with_payload=True)
|
212 |
+
print("\nPreview of stored points:")
|
213 |
+
for point in preview:
|
214 |
+
print(f"ID: {point.id} | Text: {point.payload['text'][:80]}...")
|
215 |
+
|
216 |
+
return embedder
|
217 |
+
|
218 |
+
# =====================
|
219 |
+
# Baseline Retrieval (No rerank)
|
220 |
+
# =====================
|
221 |
+
def run_retrieval(embedder):
|
222 |
+
client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
|
223 |
+
retrieval_times = []
|
224 |
+
retrieved_docs_list = []
|
225 |
+
rerank_scores_list = []
|
226 |
+
qids = []
|
227 |
+
|
228 |
+
print("Running baseline retrieval ...")
|
229 |
+
for qid, qtext in tqdm(queries_list, desc="Baseline retrieval queries"):
|
230 |
+
q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]
|
231 |
+
|
232 |
+
start_time = time.time()
|
233 |
+
search_result = client.query_points(
|
234 |
+
collection_name=collection_name,
|
235 |
+
query=q_vec,
|
236 |
+
limit=retrieval_n,
|
237 |
+
with_payload=True
|
238 |
+
)
|
239 |
+
retrieval_time = time.time() - start_time
|
240 |
+
retrieval_times.append(retrieval_time)
|
241 |
+
|
242 |
+
retrieved_ids_int = [hit.id for hit in search_result.points]
|
243 |
+
retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]
|
244 |
+
|
245 |
+
qids.append(qid)
|
246 |
+
retrieved_docs_list.append(retrieved_ids)
|
247 |
+
rerank_scores_list.append([])
|
248 |
+
|
249 |
+
results = {
|
250 |
+
"qids": qids,
|
251 |
+
"retrieved": retrieved_docs_list,
|
252 |
+
"rerank_scores": rerank_scores_list,
|
253 |
+
"retrieval_times": retrieval_times,
|
254 |
+
"rerank_times": []
|
255 |
+
}
|
256 |
+
return results
|
257 |
+
|
258 |
+
# =====================
|
259 |
+
# Retrieval + Rerank
|
260 |
+
# =====================
|
261 |
+
def run_rerank(embedder):
|
262 |
+
client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
|
263 |
+
results_data = {}
|
264 |
+
|
265 |
+
for rerank_model in rerank_models:
|
266 |
+
print(f"Running retrieval + reranking with model {rerank_model} ...")
|
267 |
+
reranker = CrossEncoder(rerank_model, trust_remote_code=True)
|
268 |
+
retrieval_times = []
|
269 |
+
rerank_times = []
|
270 |
+
retrieved_docs_list = []
|
271 |
+
rerank_scores_list = []
|
272 |
+
qids = []
|
273 |
+
|
274 |
+
for qid, qtext in tqdm(queries_list, desc=f"Retrieval + rerank with {rerank_model}"):
|
275 |
+
q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]
|
276 |
+
|
277 |
+
start_retrieval = time.time()
|
278 |
+
search_result = client.query_points(
|
279 |
+
collection_name=collection_name,
|
280 |
+
query=q_vec,
|
281 |
+
limit=retrieval_n,
|
282 |
+
with_payload=True
|
283 |
+
)
|
284 |
+
retrieval_time = time.time() - start_retrieval
|
285 |
+
retrieval_times.append(retrieval_time)
|
286 |
+
|
287 |
+
retrieved_ids_int = [hit.id for hit in search_result.points]
|
288 |
+
retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]
|
289 |
+
retrieved_texts = [hit.payload['text'] for hit in search_result.points]
|
290 |
+
|
291 |
+
start_rerank = time.time()
|
292 |
+
pairs = [(qtext, txt) for txt in retrieved_texts]
|
293 |
+
rerank_scores = reranker.predict(pairs)
|
294 |
+
rerank_time = time.time() - start_rerank
|
295 |
+
rerank_times.append(rerank_time)
|
296 |
+
|
297 |
+
qids.append(qid)
|
298 |
+
retrieved_docs_list.append(retrieved_ids)
|
299 |
+
rerank_scores_list.append(list(rerank_scores))
|
300 |
+
|
301 |
+
results_data[rerank_model] = {
|
302 |
+
"qids": qids,
|
303 |
+
"retrieved": retrieved_docs_list,
|
304 |
+
"rerank_scores": rerank_scores_list,
|
305 |
+
"retrieval_times": retrieval_times,
|
306 |
+
"rerank_times": rerank_times
|
307 |
+
}
|
308 |
+
|
309 |
+
return results_data
|
310 |
+
|
311 |
+
|
312 |
+
# =====================
|
313 |
+
# MAIN RUN
|
314 |
+
# =====================
|
315 |
+
if __name__ == "__main__":
|
316 |
+
#embedder = encode_and_upload()
|
317 |
+
|
318 |
+
#baseline_results = run_retrieval(embedder)
|
319 |
+
rerank_results = run_rerank(embedder)
|
320 |
+
|
321 |
+
#all_results = {"Qdrant Baseline": baseline_results}
|
322 |
+
all_results.update(rerank_results)
|
323 |
+
|
324 |
+
df_metrics = evaluate_metrics(all_results, qrels_dict, k_values)
|
325 |
+
|
326 |
+
|
327 |
+
# Prepare column groups
|
328 |
+
recall_cols = ["Model"] + [f"Recall@{k}" for k in k_values] + [f"Precision@{k}" for k in k_values]
|
329 |
+
ndcg_success_cols = ["Model"] + [f"NDCG@{k}" for k in k_values] + [f"Success@{k}" for k in k_values]
|
330 |
+
summary_cols = ["Model", "MAP", "MRR", "AvgRetrievalTime(s)", "AvgRerankTime(s)"]
|
331 |
+
|
332 |
+
print("\n--- Recall and Precision ---")
|
333 |
+
print(df_metrics[recall_cols].to_string(index=False))
|
334 |
+
|
335 |
+
print("\n--- NDCG and Success ---")
|
336 |
+
print(df_metrics[ndcg_success_cols].to_string(index=False))
|
337 |
+
|
338 |
+
print("\n--- Summary Metrics and Timing ---")
|
339 |
+
print(df_metrics[summary_cols].to_string(index=False))
|
340 |
+
|
341 |
+
|
342 |
+
avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 1]) for rel in qrels_dict.values()])
|
343 |
+
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")
|
344 |
+
|
345 |
+
|
346 |
+
# --------------------
|
347 |
+
# CONFIG
|
348 |
+
# --------------------
|
349 |
+
QDRANT_URL = os.getenv("https://5cd56757-1989-4ce6-b7b6-97f6e13f9e89.us-east4-0.gcp.cloud.qdrant.io:6333", "http://localhost:6333")COLLECTION_NAME = "trec_covid"
|
350 |
+
EMBEDDING_MODEL = "all-MiniLM-L6-v2"
|
351 |
+
MAPPING_FILE = "int_to_doc_id.pkl"
|
352 |
+
# --------------------
|
353 |
+
# DATA
|
354 |
+
# --------------------
|
355 |
+
corpus = load_dataset("BeIR/trec-covid", "corpus")
|
356 |
+
queries = load_dataset("BeIR/trec-covid", "queries")
|
357 |
+
qrels = load_dataset("BeIR/trec-covid-qrels", split="test")
|
358 |
+
|
359 |
+
qrels_dict = {}
|
360 |
+
for row in qrels:
|
361 |
+
qid = int(row["query-id"])
|
362 |
+
qrels_dict.setdefault(qid, {})[row["corpus-id"]] = int(row["score"])
|
363 |
+
|
364 |
+
qds = queries["queries"]
|
365 |
+
max_dd = min(200, len(qds))
|
366 |
+
_qids = qds["_id"][:max_dd]
|
367 |
+
_texts = qds["text"][:max_dd]
|
368 |
+
trec_queries = [(f"{_qids[i]}: {_texts[i][:80]}", int(_qids[i]), _texts[i]) for i in range(max_dd)]
|
369 |
+
label2qt = {lab: (qid, txt) for (lab, qid, txt) in trec_queries}
|
370 |
+
|
371 |
+
# --------------------
|
372 |
+
# ID MAP
|
373 |
+
# --------------------
|
374 |
+
if not os.path.exists(MAPPING_FILE):
|
375 |
+
raise FileNotFoundError(f"Missing {MAPPING_FILE}. Save it during indexing.")
|
376 |
+
with open(MAPPING_FILE, "rb") as f:
|
377 |
+
int_to_doc_id = pickle.load(f)
|
378 |
+
INDEXED_DOC_IDS = set(int_to_doc_id.values())
|
379 |
+
|
380 |
+
# --------------------
|
381 |
+
# Lazy singletons
|
382 |
+
# --------------------
|
383 |
+
_client = None
|
384 |
+
_embedder = None
|
385 |
+
_rerankers = {}
|
386 |
+
def get_client():
|
387 |
+
global _client
|
388 |
+
if _client is None:
|
389 |
+
_client = QdrantClient(url=QDRANT_URL, api_key=os.getenv("QDRANT_API_KEY"))
|
390 |
+
return _client
|
391 |
+
|
392 |
+
def get_embedder():
|
393 |
+
global _embedder
|
394 |
+
if _embedder is None:
|
395 |
+
_embedder = SentenceTransformer(EMBEDDING_MODEL)
|
396 |
+
return _embedder
|
397 |
+
|
398 |
+
def get_reranker(model_name):
|
399 |
+
if model_name not in _rerankers:
|
400 |
+
_rerankers[model_name] = CrossEncoder(model_name, trust_remote_code=True)
|
401 |
+
return _rerankers[model_name]
|
402 |
+
|
403 |
+
# --------------------
|
404 |
+
# Metrics
|
405 |
+
# --------------------
|
406 |
+
def recall_at_k(relevant_ids_set, retrieved_ids, k):
|
407 |
+
if not relevant_ids_set:
|
408 |
+
return None
|
409 |
+
return len(relevant_ids_set.intersection(retrieved_ids[:k])) / len(relevant_ids_set)
|
410 |
+
|
411 |
+
def precision_at_k(relevant_ids_set, retrieved_ids, k):
|
412 |
+
if k == 0:
|
413 |
+
return None
|
414 |
+
return len(relevant_ids_set.intersection(retrieved_ids[:k])) / k
|
415 |
+
|
416 |
+
def hit_at_k(relevant_ids_set, retrieved_ids, k):
|
417 |
+
return int(len(relevant_ids_set.intersection(retrieved_ids[:k])) > 0)
|
418 |
+
|
419 |
+
def ndcg_at_k(relevant_ids_scores, retrieved_ids, k):
|
420 |
+
dcg = 0.0
|
421 |
+
idcg = 0.0
|
422 |
+
for i, doc_id in enumerate(retrieved_ids[:k]):
|
423 |
+
rel = relevant_ids_scores.get(doc_id, 0)
|
424 |
+
if rel > 0:
|
425 |
+
dcg += (2**rel - 1) / log2(i+2)
|
426 |
+
sorted_rels = sorted(relevant_ids_scores.values(), reverse=True)[:k]
|
427 |
+
for i, rel in enumerate(sorted_rels):
|
428 |
+
if rel > 0:
|
429 |
+
idcg += (2**rel - 1) / log2(i+2)
|
430 |
+
return dcg / idcg if idcg > 0 else None
|
431 |
+
|
432 |
+
def evaluate_model(relevant_in_collection, relevant_scores_in_collection, doc_order, k):
|
433 |
+
return {
|
434 |
+
"Recall@k": round(recall_at_k(relevant_in_collection, doc_order, k), 4),
|
435 |
+
"Precision@k": round(precision_at_k(relevant_in_collection, doc_order, k), 4),
|
436 |
+
"Hit@k": hit_at_k(relevant_in_collection, doc_order, k),
|
437 |
+
"NDCG@k": None if ndcg_at_k(relevant_scores_in_collection, doc_order, k) is None else round(ndcg_at_k(relevant_scores_in_collection, doc_order, k), 4),
|
438 |
+
}
|
439 |
+
|
440 |
+
# --------------------
|
441 |
+
# Core
|
442 |
+
# --------------------
|
443 |
+
def run_demo(
|
444 |
+
query_text, retrieval_n, top_k, use_trec, trec_label, rel_threshold,
|
445 |
+
use_baseline, *selected_rerankers
|
446 |
+
):
|
447 |
+
client = get_client()
|
448 |
+
embedder = get_embedder()
|
449 |
+
|
450 |
+
qid = None
|
451 |
+
if use_trec and trec_label:
|
452 |
+
qid, query_text = label2qt[trec_label]
|
453 |
+
|
454 |
+
if not query_text or not query_text.strip():
|
455 |
+
return pd.DataFrame(), {"Note": "Empty query."}
|
456 |
+
|
457 |
+
q_vec = embedder.encode([query_text], normalize_embeddings=True)[0]
|
458 |
+
res = client.query_points(
|
459 |
+
collection_name=COLLECTION_NAME,
|
460 |
+
query=q_vec,
|
461 |
+
limit=int(retrieval_n),
|
462 |
+
with_payload=True
|
463 |
+
)
|
464 |
+
points = getattr(res, "points", res)
|
465 |
+
|
466 |
+
cand_docs, cand_texts, cand_qdrant_scores = [], [], []
|
467 |
+
for p in points:
|
468 |
+
payload = getattr(p, "payload", {}) or {}
|
469 |
+
pid = int(getattr(p, "id"))
|
470 |
+
doc_id = payload.get("doc_id", int_to_doc_id.get(pid, str(pid)))
|
471 |
+
cand_docs.append(doc_id)
|
472 |
+
cand_texts.append(payload.get("text", ""))
|
473 |
+
cand_qdrant_scores.append(getattr(p, "score", None))
|
474 |
+
|
475 |
+
cols = {
|
476 |
+
"rank": list(range(1, int(top_k)+1)),
|
477 |
+
"doc_id": [],
|
478 |
+
"score_qdrant": [],
|
479 |
+
"text_snippet": [],
|
480 |
+
}
|
481 |
+
reranker_scores = {}
|
482 |
+
|
483 |
+
for model_name, is_selected in zip(rerank_models, selected_rerankers):
|
484 |
+
if is_selected:
|
485 |
+
rr = get_reranker(model_name)
|
486 |
+
reranker_scores[model_name] = rr.predict([(query_text, t) for t in cand_texts])
|
487 |
+
|
488 |
+
for i in range(min(int(top_k), len(cand_docs))):
|
489 |
+
cols["doc_id"].append(cand_docs[i])
|
490 |
+
cols["score_qdrant"].append(cand_qdrant_scores[i])
|
491 |
+
txt = cand_texts[i]
|
492 |
+
cols["text_snippet"].append(txt[:300] + ("…" if len(txt) > 300 else ""))
|
493 |
+
for model_name in reranker_scores:
|
494 |
+
col_key = f"score_{model_name.split('/')[-1]}"
|
495 |
+
if col_key not in cols:
|
496 |
+
cols[col_key] = []
|
497 |
+
cols[col_key].append(float(reranker_scores[model_name][i]))
|
498 |
+
|
499 |
+
df = pd.DataFrame(cols)
|
500 |
+
|
501 |
+
metrics = {}
|
502 |
+
if qid is not None:
|
503 |
+
rels = qrels_dict.get(qid, {})
|
504 |
+
relevant_all = {d for d, s in rels.items() if s >= rel_threshold}
|
505 |
+
relevant_in_collection = relevant_all & INDEXED_DOC_IDS
|
506 |
+
relevant_scores_in_collection = {d: s for d, s in rels.items() if d in INDEXED_DOC_IDS}
|
507 |
+
ceiling_recall = round(len(relevant_in_collection) / len(relevant_all), 4) if relevant_all else None
|
508 |
+
|
509 |
+
if use_baseline:
|
510 |
+
metrics["Qdrant"] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, cand_docs, int(top_k))
|
511 |
+
|
512 |
+
for model_name, is_selected in zip(rerank_models, selected_rerankers):
|
513 |
+
if is_selected:
|
514 |
+
order = sorted(range(len(cand_docs)), key=lambda i: reranker_scores[model_name][i], reverse=True)
|
515 |
+
top_docs = [cand_docs[i] for i in order[:int(top_k)]]
|
516 |
+
metrics[model_name] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, top_docs, int(top_k))
|
517 |
+
|
518 |
+
metrics["QueryID"] = int(qid)
|
519 |
+
metrics["Relevant>=threshold (all)"] = len(relevant_all)
|
520 |
+
metrics["Relevant in collection"] = len(relevant_in_collection)
|
521 |
+
metrics["Recall Ceiling (collection)"] = ceiling_recall
|
522 |
+
|
523 |
+
return df, metrics
|
524 |
+
|
525 |
+
# --------------------
|
526 |
+
# UI
|
527 |
+
# --------------------
|
528 |
+
with gr.Blocks(title="Qdrant Retrieval Demo") as demo:
|
529 |
+
gr.Markdown("### Qdrant Retrieval Demo (TREC-COVID) + Multiple Metrics")
|
530 |
+
|
531 |
+
with gr.Row():
|
532 |
+
query_text = gr.Textbox(label="Query (free text)", placeholder="e.g., ACE2 inhibitors and COVID-19", lines=2)
|
533 |
+
with gr.Row():
|
534 |
+
retrieval_n = gr.Slider(10, 2000, value=50, step=10, label="retrieval_n (candidates from Qdrant)")
|
535 |
+
top_k = gr.Slider(1, 500, value=10, step=1, label="top_k (metrics cutoff)")
|
536 |
+
with gr.Row():
|
537 |
+
use_trec = gr.Checkbox(label="Use a TREC-COVID query", value=True)
|
538 |
+
trec_choice = gr.Dropdown(choices=[lab for (lab, _, _) in trec_queries],
|
539 |
+
value=trec_queries[0][0] if trec_queries else None,
|
540 |
+
label="Pick TREC-COVID query")
|
541 |
+
rel_threshold = gr.Radio(choices=[1, 2], value=1, label="Relevance threshold")
|
542 |
+
|
543 |
+
gr.Markdown("**Models to evaluate:**")
|
544 |
+
with gr.Row():
|
545 |
+
use_baseline = gr.Checkbox(label="Qdrant baseline", value=True)
|
546 |
+
ce_checkboxes = [gr.Checkbox(label=model_name, value=False) for model_name in rerank_models]
|
547 |
+
|
548 |
+
run_btn = gr.Button("Search")
|
549 |
+
out_df = gr.Dataframe(label="Retrieved Docs + Scores", wrap=True)
|
550 |
+
out_metrics = gr.JSON(label="Metrics (per selected model + ceiling recall)")
|
551 |
+
|
552 |
+
run_btn.click(
|
553 |
+
fn=run_demo,
|
554 |
+
inputs=[query_text, retrieval_n, top_k, use_trec, trec_choice, rel_threshold,
|
555 |
+
use_baseline, *ce_checkboxes],
|
556 |
+
outputs=[out_df, out_metrics]
|
557 |
+
)
|
558 |
+
# demo.launch(...) # disabled for Spaces; see __main__ block below
|
559 |
+
|
560 |
+
|
561 |
+
if __name__ == "__main__":
|
562 |
+
try:
|
563 |
+
demo # Gradio Blocks defined in the notebook
|
564 |
+
except NameError:
|
565 |
+
raise RuntimeError("Could not find `demo`. Ensure your notebook defines `demo = gr.Blocks(...)`.")
|
566 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
int_to_doc_id.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2646d9e29946c295f2f697dfe63232cf5a8540cc24c2a98a4c1fcbf0d6b4a870
|
3 |
+
size 1469086
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
fastapi
|
3 |
+
uvicorn
|
4 |
+
qdrant-client
|
5 |
+
sentence-transformers
|
6 |
+
transformers
|
7 |
+
datasets
|
8 |
+
pandas
|
9 |
+
numpy
|
10 |
+
scikit-learn
|
11 |
+
torch
|
12 |
+
accelerate
|