Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
# Use a pipeline as a high-level helper
|
6 |
+
from transformers import pipeline
|
7 |
+
# model_path = "../models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13"
|
8 |
+
|
9 |
+
# analyzer = pipeline("text-classification", model=model_path)
|
10 |
+
analyzer = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
11 |
+
# print(analyzer(["This product is good", "This product was quite expensive"]))
|
12 |
+
|
13 |
+
|
14 |
+
def sentiment_analyzer(review):
|
15 |
+
sentiment = analyzer(review)
|
16 |
+
return sentiment[0]['label']
|
17 |
+
|
18 |
+
def generate_sentiment_bar_chart(df):
|
19 |
+
# Validate DataFrame
|
20 |
+
if not {'Review', 'Sentiment'}.issubset(df.columns):
|
21 |
+
raise ValueError("DataFrame must contain 'Review' and 'Sentiment' columns.")
|
22 |
+
|
23 |
+
# Count occurrences of each sentiment
|
24 |
+
sentiment_counts = df['Sentiment'].value_counts()
|
25 |
+
|
26 |
+
# Create bar chart
|
27 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
28 |
+
sentiment_counts.plot(kind='bar', color=['green', 'red'], edgecolor='black', ax=ax)
|
29 |
+
|
30 |
+
# Customize plot
|
31 |
+
ax.set_title("Sentiment Distribution", fontsize=14)
|
32 |
+
ax.set_xlabel("Sentiment", fontsize=12)
|
33 |
+
ax.set_ylabel("Count", fontsize=12)
|
34 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
35 |
+
plt.xticks(rotation=45)
|
36 |
+
|
37 |
+
# Adjust layout
|
38 |
+
plt.tight_layout()
|
39 |
+
|
40 |
+
return fig
|
41 |
+
|
42 |
+
|
43 |
+
def read_review_and_analyze_sentiment(file_object):
|
44 |
+
df = pd.read_excel(file_object)
|
45 |
+
if 'Review' not in df.columns:
|
46 |
+
raise ValueError("Excel file must contain a 'Review' colum.")
|
47 |
+
df['Sentiment'] = df['Review'].apply(sentiment_analyzer)
|
48 |
+
chat_object = generate_sentiment_bar_chart(df)
|
49 |
+
return df, chat_object
|
50 |
+
# file = '../files/product_review.xlsx'
|
51 |
+
# result = read_review_and_analyze_sentiment(file)
|
52 |
+
# print(result)
|
53 |
+
|
54 |
+
gr.close_all()
|
55 |
+
|
56 |
+
# demo = gr.Interface(fn=summary, inputs="text", outputs="text")
|
57 |
+
demo = gr.Interface(fn=read_review_and_analyze_sentiment,
|
58 |
+
inputs=[gr.File(file_types=[".xlsx"],label="Input your review comment")],
|
59 |
+
outputs=[gr.Dataframe(label="Sentiment"), gr.Plot(label="Sentiment Analysis")],
|
60 |
+
title="GenAI Project 3: Sentiment Analyzer",
|
61 |
+
description="This application is use to analyze the sentiment based on the File uploaded.")
|
62 |
+
demo.launch()
|