Spaces:
Runtime error
Runtime error
| ############################################################## | |
| # copy from cognitron_vl/constants.py | |
| ############################################################## | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| if True: | |
| IMG_TAG_TOKEN = "<image>" | |
| VID_TAG_TOKEN = "<video>" | |
| AUD_TAG_TOKEN = "<audio>" | |
| IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' | |
| IMG_START_TOKEN = '<img>' | |
| IMG_END_TOKEN = '</img>' | |
| VID_CONTEXT_TOKEN = '<VID_CONTEXT>' | |
| VID_START_TOKEN = '<vid>' | |
| VID_END_TOKEN = '</vid>' | |
| PATCH_CONTEXT_TOKEN = '<PATCH_CONTEXT>' | |
| PATCH_START_TOKEN = '<patch>' | |
| PATCH_END_TOKEN = '</patch>' | |
| AUD_START_TOKEN = '<|begin_of_audio|>' | |
| AUD_END_TOKEN = '<|end_of_audio|>' | |
| QUAD_START_TOKEN = '<quad>' | |
| QUAD_END_TOKEN = '</quad>' | |
| REF_START_TOKEN = '<ref>' | |
| REF_END_TOKEN = '</ref>' | |
| BOX_START_TOKEN = '<box>' | |
| BOX_END_TOKEN = '</box>' | |
| if False: | |
| IMG_TAG_TOKEN = "<|image|>" | |
| VID_TAG_TOKEN = "<|video|>" | |
| AUD_TAG_TOKEN = "<|audio|>" | |
| IMG_CONTEXT_TOKEN = '<|context_of_image|>' | |
| IMG_START_TOKEN = '<|begin_of_image|>' | |
| IMG_END_TOKEN = '<|end_of_image|>' | |
| VID_CONTEXT_TOKEN = '<|context_of_video|>' | |
| VID_START_TOKEN = '<|begin_of_video|>' | |
| VID_END_TOKEN = '<|end_of_video|>' | |
| PATCH_CONTEXT_TOKEN = '<|context_of_patch|>' | |
| PATCH_START_TOKEN = '<|begin_of_patch|>' | |
| PATCH_END_TOKEN = '<|end_of_patch|>' | |
| AUD_START_TOKEN = '<|begin_of_audio|>' | |
| AUD_END_TOKEN = '<|end_of_audio|>' | |
| QUAD_START_TOKEN = '<|begin_of_quad|>' | |
| QUAD_END_TOKEN = '<|end_of_quad|>' | |
| REF_START_TOKEN = '<|begin_of_ref|>' | |
| REF_END_TOKEN = '<|end_of_ref|>' | |
| BOX_START_TOKEN = '<|begin_of_box|>' | |
| BOX_END_TOKEN = '<|end_of_box|>' | |
| logger.info(f"IMG_TAG_TOKEN {IMG_TAG_TOKEN}") | |
| logger.info(f"VID_TAG_TOKEN {VID_TAG_TOKEN}") | |
| logger.info(f"AUD_TAG_TOKEN {AUD_TAG_TOKEN}") | |
| logger.info(f"IMG_CONTEXT_TOKEN {IMG_CONTEXT_TOKEN}") | |
| logger.info(f"IMG_START_TOKEN {IMG_START_TOKEN}") | |
| logger.info(f"IMG_END_TOKEN {IMG_END_TOKEN}") | |
| logger.info(f"VID_CONTEXT_TOKEN {VID_CONTEXT_TOKEN}") | |
| logger.info(f"VID_START_TOKEN {VID_START_TOKEN}") | |
| logger.info(f"VID_END_TOKEN {VID_END_TOKEN}") | |
| logger.info(f"PATCH_CONTEXT_TOKEN {PATCH_CONTEXT_TOKEN}") | |
| logger.info(f"PATCH_START_TOKEN {PATCH_START_TOKEN}") | |
| logger.info(f"PATCH_END_TOKEN {PATCH_END_TOKEN}") | |
| logger.info(f"AUD_START_TOKEN {AUD_START_TOKEN}") | |
| logger.info(f"AUD_END_TOKEN {AUD_END_TOKEN}") | |
| # IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| # IMAGENET_STD = (0.229, 0.224, 0.225) | |
| # CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073) | |
| # CLIP_STD = (0.2686295, 0.2613025, 0.2757711) | |
| # SIGLIP_MEAN = (0.5, 0.5, 0.5) | |
| # SIGLIP_STD = (0.5, 0.5, 0.5) | |
| IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406] | |
| IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225] | |
| IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5] | |
| IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5] | |
| OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] | |
| OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711] | |
| # Model Constants | |
| IGNORE_INDEX = -100 | |
| IMAGE_TOKEN_INDEX = -200 | |
| DEFAULT_IMAGE_TOKEN = IMG_CONTEXT_TOKEN | |
| DEFAULT_IMAGE_PATCH_TOKEN = PATCH_CONTEXT_TOKEN | |
| DEFAULT_IM_START_TOKEN = IMG_START_TOKEN | |
| DEFAULT_IM_END_TOKEN = IMG_END_TOKEN | |
| ############################################################## | |
| ############################################################## | |
| # copy from cognitron_vl/data/processor/image_processor.py | |
| ############################################################## | |
| import math | |
| import os | |
| import cv2 | |
| import natsort | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import decord | |
| # from cognitron_vl.constants import ( | |
| # IMAGENET_DEFAULT_MEAN, | |
| # IMAGENET_DEFAULT_STD, | |
| # IMAGENET_STANDARD_MEAN, | |
| # IMAGENET_STANDARD_STD, | |
| # OPENAI_CLIP_MEAN, | |
| # OPENAI_CLIP_STD, | |
| # ) | |
| class ImageProcessor: | |
| def __init__( | |
| self, | |
| process_type, | |
| image_size=448, | |
| normalize_type="imagenet", | |
| min_patch_grid=1, | |
| max_patch_grid=6, | |
| ): | |
| self.process_type = process_type | |
| self.image_size = image_size | |
| if normalize_type == "imagenet": | |
| MEAN, STD = IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| elif normalize_type == "clip": | |
| MEAN, STD = OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
| elif normalize_type == "siglip": | |
| MEAN, STD = IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD | |
| else: | |
| raise NotImplementedError | |
| self.mean = MEAN | |
| self.std = STD | |
| self.patch_size = image_size | |
| self.min_patch_grid = min_patch_grid | |
| self.max_patch_grid = max_patch_grid | |
| if self.process_type == "anyres": | |
| self.grid_pinpoints = [ | |
| (i, j) | |
| for i in range(min_patch_grid, max_patch_grid + 1) | |
| for j in range(min_patch_grid, max_patch_grid + 1) | |
| ] | |
| self.possible_resolutions = [ | |
| [dim * self.patch_size for dim in pair] for pair in self.grid_pinpoints | |
| ] | |
| print(f"grid_pinpoints {self.grid_pinpoints}") | |
| print(f"possible_resolutions {self.possible_resolutions}") | |
| if self.process_type == "dynamic": | |
| max_num = self.max_patch_grid | |
| min_num = self.min_patch_grid | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) | |
| for n in range(min_num, max_num + 1) | |
| for i in range(1, n + 1) | |
| for j in range(1, n + 1) | |
| if i * j <= max_num and i * j >= min_num | |
| ) | |
| self.target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| self.possible_resolutions = [ | |
| [dim * self.patch_size for dim in pair] for pair in self.target_ratios | |
| ] | |
| print(f"target_ratios {self.target_ratios}") | |
| print(f"possible_resolutions {self.possible_resolutions}") | |
| def get_frame_paths(self, frame_root, num_frames=8): | |
| os.makedirs(frame_root, exist_ok=True) | |
| self.frame_tmpl = "frame-{}-of-{}.jpg" | |
| return [ | |
| os.path.join(frame_root, self.frame_tmpl.format(i, num_frames)) | |
| for i in range(1, num_frames + 1) | |
| ] | |
| def save_video_frames(self, vid_path, max_fps=1, num_frames=8): | |
| vid = decord.VideoReader(vid_path, num_threads=1) | |
| step_size = len(vid) / (num_frames + 1) | |
| # step_size = max(1, step_size) | |
| fps = vid.get_avg_fps() | |
| step_size = max(fps / max_fps, step_size) | |
| # indices = [int(i * step_size) for i in range(1, num_frames + 1)] | |
| indices = [int(i * step_size) for i in range(0, num_frames)] | |
| indices = [i for i in indices if i < len(vid)] | |
| num_frames = len(indices) | |
| frame_paths = self.get_frame_paths(vid_path + ".saved_frames", num_frames) | |
| flag = np.all([os.path.exists(p) for p in frame_paths]) | |
| if flag: | |
| return frame_paths | |
| images = [vid[i].asnumpy() for i in indices] | |
| images = [Image.fromarray(arr) for arr in images] | |
| for im, pth in zip(images, frame_paths): | |
| # if not os.path.exists(pth): | |
| # im.save(pth) | |
| im.save(pth) | |
| # print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}") | |
| return frame_paths | |
| def get_video_frames(self, vid_path, max_fps=1, num_frames=8): | |
| vid = decord.VideoReader(vid_path, num_threads=1) | |
| step_size = len(vid) / (num_frames + 1) | |
| # step_size = max(1, step_size) | |
| fps = vid.get_avg_fps() | |
| step_size = max(fps / max_fps, step_size) | |
| # indices = [int(i * step_size) for i in range(1, num_frames + 1)] | |
| indices = [int(i * step_size) for i in range(0, num_frames)] | |
| indices = [i for i in indices if i < len(vid)] | |
| images = [vid[i].asnumpy() for i in indices] | |
| images = [Image.fromarray(arr) for arr in images] | |
| # print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}") | |
| return images | |
| def process_video(self, video_file_or_dir, max_num_frame=8, max_fps=1): | |
| if os.path.isdir(video_file_or_dir): | |
| all_filepath = [] | |
| for root, dirs, files in os.walk(video_file_or_dir): | |
| for filename in files: | |
| if ( | |
| filename.endswith("png") | |
| or filename.endswith("jpeg") | |
| or filename.endswith("jpg") | |
| ): | |
| filepath = os.path.join(root, filename) | |
| all_filepath.append(filepath) | |
| if len(all_filepath) == 0: | |
| return None | |
| # all_filepath.sort() | |
| all_filepath = natsort.natsorted(all_filepath) | |
| total_frame = len(all_filepath) | |
| if "ShareGPTVideo" in video_file_or_dir: | |
| fps = 2 | |
| else: | |
| fps = 1 | |
| target_frame = int(min(total_frame / fps * max_fps, max_num_frame)) | |
| index = [int(1.0 * total_frame / target_frame) * x for x in range(target_frame)] | |
| selected_filepath = [all_filepath[x] for x in index] | |
| img_or_path_list = selected_filepath | |
| # print(f"process_video {img_or_path_list}") | |
| elif os.path.isfile(video_file_or_dir): | |
| # frame_paths = self.save_video_frames( | |
| # video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps | |
| # ) | |
| # img_or_path_list = frame_paths | |
| img_or_path_list = self.get_video_frames( | |
| video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps | |
| ) | |
| else: | |
| # print(f"FileNotFoundError {video_file_or_dir}") | |
| raise NotImplementedError | |
| return self.process_images(img_or_path_list), img_or_path_list | |
| def process_images(self, img_or_path_list): | |
| if isinstance(img_or_path_list[0], str): | |
| images = [Image.open(x).convert("RGB") for x in img_or_path_list] | |
| elif isinstance(img_or_path_list[0], Image.Image): | |
| images = [x.convert("RGB") for x in img_or_path_list] | |
| else: | |
| images = img_or_path_list | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| image_tensor = torch.ones([len(images), 3, self.image_size, self.image_size]) | |
| for i, image in enumerate(images): | |
| image = expand2square(image, tuple(int(x * 255) for x in self.mean)) | |
| image = image.resize( | |
| (self.image_size, self.image_size), resample=Image.Resampling.BICUBIC | |
| ) | |
| image = np.array(image, dtype=np.float32) | |
| image = image * 1.0 / 255.0 | |
| mean = np.array(self.mean, dtype=image.dtype) | |
| std = np.array(self.std, dtype=image.dtype) | |
| image = (image - mean) / std | |
| image = torch.tensor(image, dtype=torch.float32) | |
| image = image.permute(2, 0, 1) | |
| image_tensor[i] = image | |
| return image_tensor | |
| def process_images_with_subpatch(self, img_or_path): | |
| if self.process_type == "anyres": | |
| return self.process_anyres(img_or_path) | |
| if self.process_type == "dynamic": | |
| return self.process_dynamic(img_or_path) | |
| if isinstance(img_or_path, str): | |
| image = Image.open(img_or_path).convert("RGB") | |
| elif isinstance(img_or_path, Image.Image): | |
| image = img_or_path.convert("RGB") | |
| else: | |
| image = img_or_path | |
| return self.process_images([images]) | |
| def process_anyres(self, img_or_path): | |
| if isinstance(img_or_path, str): | |
| image = Image.open(img_or_path).convert("RGB") | |
| elif isinstance(img_or_path, Image.Image): | |
| image = img_or_path.convert("RGB") | |
| else: | |
| image = img_or_path | |
| best_resolution = select_best_resolution(image.size, self.possible_resolutions) | |
| image_padded = resize_and_pad_image(image, best_resolution) | |
| patches = divide_to_patches(image_padded, self.patch_size) | |
| if best_resolution == (self.patch_size, self.patch_size): | |
| image_patches = [image] | |
| else: | |
| image_patches = [image] + patches | |
| image_patches = self.process_images(image_patches) | |
| # print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}") | |
| return image_patches, best_resolution | |
| def process_dynamic(self, img_or_path): | |
| if isinstance(img_or_path, str): | |
| image = Image.open(img_or_path).convert("RGB") | |
| elif isinstance(img_or_path, Image.Image): | |
| image = img_or_path.convert("RGB") | |
| else: | |
| image = img_or_path | |
| image_patches, best_resolution = dynamic_preprocess( | |
| image, | |
| min_num=self.min_patch_grid, | |
| max_num=self.max_patch_grid, | |
| image_size=self.patch_size, | |
| use_thumbnail=True, | |
| ) | |
| image_patches = self.process_images(image_patches) | |
| # print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}") | |
| return image_patches, best_resolution | |
| def select_best_resolution(original_size, possible_resolutions): | |
| """ | |
| Selects the best resolution from a list of possible resolutions based on the original size. | |
| Args: | |
| original_size (tuple): The original size of the image in the format (width, height). | |
| possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
| Returns: | |
| tuple: The best fit resolution in the format (width, height). | |
| """ | |
| original_width, original_height = original_size | |
| best_fit = None | |
| max_effective_resolution = 0 | |
| min_wasted_resolution = float("inf") | |
| for width, height in possible_resolutions: | |
| # Calculate the downscaled size to keep the aspect ratio | |
| scale = min(width / original_width, height / original_height) | |
| downscaled_width, downscaled_height = int(original_width * scale), int( | |
| original_height * scale | |
| ) | |
| # Calculate effective and wasted resolutions | |
| effective_resolution = min( | |
| downscaled_width * downscaled_height, original_width * original_height | |
| ) | |
| wasted_resolution = (width * height) - effective_resolution | |
| if effective_resolution > max_effective_resolution or ( | |
| effective_resolution == max_effective_resolution | |
| and wasted_resolution < min_wasted_resolution | |
| ): | |
| max_effective_resolution = effective_resolution | |
| min_wasted_resolution = wasted_resolution | |
| best_fit = (width, height) | |
| return best_fit | |
| def resize_and_pad_image(image, target_resolution): | |
| """ | |
| Resize and pad an image to a target resolution while maintaining aspect ratio. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| target_resolution (tuple): The target resolution (width, height) of the image. | |
| Returns: | |
| PIL.Image.Image: The resized and padded image. | |
| """ | |
| original_width, original_height = image.size | |
| target_width, target_height = target_resolution | |
| # Determine which dimension (width or height) to fill | |
| scale_w = target_width / original_width | |
| scale_h = target_height / original_height | |
| if scale_w < scale_h: | |
| # Width will be filled completely | |
| new_width = target_width | |
| new_height = min(math.ceil(original_height * scale_w), target_height) | |
| else: | |
| # Height will be filled completely | |
| new_height = target_height | |
| new_width = min(math.ceil(original_width * scale_h), target_width) | |
| # Resize the image | |
| resized_image = image.resize((new_width, new_height)) | |
| # Create a new image with the target size and paste the resized image onto it | |
| new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) | |
| paste_x = (target_width - new_width) // 2 | |
| paste_y = (target_height - new_height) // 2 | |
| new_image.paste(resized_image, (paste_x, paste_y)) | |
| return new_image | |
| def divide_to_patches(image, patch_size): | |
| """ | |
| Divides an image into patches of a specified size. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| patch_size (int): The size of each patch. | |
| Returns: | |
| list: A list of PIL.Image.Image objects representing the patches. | |
| """ | |
| patches = [] | |
| width, height = image.size | |
| for i in range(0, height, patch_size): | |
| for j in range(0, width, patch_size): | |
| box = (j, i, j + patch_size, i + patch_size) | |
| patch = image.crop(box) | |
| patches.append(patch) | |
| return patches | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float("inf") | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) | |
| for n in range(min_num, max_num + 1) | |
| for i in range(1, n + 1) | |
| for j in range(1, n + 1) | |
| if i * j <= max_num and i * j >= min_num | |
| ) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size | |
| ) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size, | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| # processed_images.append(thumbnail_img) | |
| processed_images = [ | |
| thumbnail_img, | |
| ] + processed_images | |
| return processed_images, (target_width, target_height) | |
| ############################################################## | |
| ############################################################## | |
| # modify from long_vita_megatron/tasks/inference/module.py | |
| ############################################################## | |
| def get_external_inputs(tokens, image_list=None, image_path_list=None, video_path_list=None): | |
| print(f"get_external_inputs tokens {tokens.size()}") | |
| tokens = tokens.tolist() | |
| image_token_length = 256 | |
| max_num_frame = 4096 | |
| max_fps = 1 | |
| # from cognitron_vl.constants import IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN, VID_START_TOKEN, VID_END_TOKEN, VID_CONTEXT_TOKEN, PATCH_START_TOKEN, PATCH_END_TOKEN, PATCH_CONTEXT_TOKEN, IMG_TAG_TOKEN, VID_TAG_TOKEN | |
| image_tag = "<image>" | |
| video_tag = "<video>" | |
| IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
| IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids | |
| IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids | |
| VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
| VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids | |
| VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids | |
| PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
| PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids | |
| PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids | |
| IMG_TAG_ID = tokenizer(IMG_TAG_TOKEN, add_special_tokens=False).input_ids | |
| VID_TAG_ID = tokenizer(VID_TAG_TOKEN, add_special_tokens=False).input_ids | |
| assert len(IMG_CONTEXT_ID) == 1 | |
| assert len(IMG_START_ID) == 1 | |
| assert len(IMG_END_ID) == 1 | |
| assert len(VID_CONTEXT_ID) == 1 | |
| assert len(VID_START_ID) == 1 | |
| assert len(VID_END_ID) == 1 | |
| assert len(PATCH_CONTEXT_ID) == 1 | |
| assert len(PATCH_START_ID) == 1 | |
| assert len(PATCH_END_ID) == 1 | |
| IMG_CONTEXT_ID = IMG_CONTEXT_ID[0] | |
| IMG_START_ID = IMG_START_ID[0] | |
| IMG_END_ID = IMG_END_ID[0] | |
| VID_CONTEXT_ID = VID_CONTEXT_ID[0] | |
| VID_START_ID = VID_START_ID[0] | |
| VID_END_ID = VID_END_ID[0] | |
| PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0] | |
| PATCH_START_ID = PATCH_START_ID[0] | |
| PATCH_END_ID = PATCH_END_ID[0] | |
| IMG_TAG_ID = IMG_TAG_ID[0] | |
| VID_TAG_ID = VID_TAG_ID[0] | |
| nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids | |
| image_indices = [] | |
| images = [] | |
| # ---------------------------------------------------------------- | |
| # image | |
| for batch_idx, input_ids in enumerate(tokens): | |
| # img_positions = [i for i, x in enumerate(input_ids) if x == IMG_CONTEXT_ID] | |
| img_positions = [i for i, x in enumerate(input_ids) if x == IMG_TAG_ID] | |
| if len(img_positions) == 0: | |
| continue | |
| if image_path_list is not None: | |
| assert len(img_positions) == len(image_path_list), f"{img_positions} {image_path_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}" | |
| if image_list is not None: | |
| assert len(img_positions) == len(image_list), f"{img_positions} {image_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}" | |
| new_input_ids = [] | |
| st = 0 | |
| for img_idx, img_pos in enumerate(img_positions): | |
| if image_path_list is not None: | |
| image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_path_list[img_idx]) | |
| if image_list is not None: | |
| image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_list[img_idx]) | |
| images.append(image_patches) | |
| print(f"get_external_inputs best_width {best_width} best_height {best_height}") | |
| new_input_ids += input_ids[st:img_pos] | |
| new_input_ids += [IMG_START_ID] | |
| image_indice_b = torch.zeros( | |
| 1, image_token_length, dtype=torch.int64 | |
| ) # This will change in collate_fn | |
| image_indice_s = ( | |
| torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
| .unsqueeze(0) | |
| .repeat(1, 1) | |
| ) | |
| image_indice_b_s = torch.stack( | |
| [image_indice_b, image_indice_s], dim=0 | |
| ) # 2, num_image, image_length | |
| image_indices.append(image_indice_b_s) | |
| new_input_ids += [IMG_CONTEXT_ID] * image_token_length | |
| new_input_ids += [IMG_END_ID] | |
| if len(image_patches) > 1: | |
| for i in range(0, best_height, image_processor.patch_size): | |
| new_input_ids += nl_tokens | |
| for j in range(0, best_width, image_processor.patch_size): | |
| new_input_ids += [PATCH_START_ID] | |
| image_indice_b = torch.zeros( | |
| 1, image_token_length, dtype=torch.int64 | |
| ) # This will change in collate_fn | |
| image_indice_s = ( | |
| torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
| .unsqueeze(0) | |
| .repeat(1, 1) | |
| ) | |
| image_indice_b_s = torch.stack( | |
| [image_indice_b, image_indice_s], dim=0 | |
| ) # 2, num_image, image_length | |
| image_indices.append(image_indice_b_s) | |
| new_input_ids += [PATCH_CONTEXT_ID] * image_token_length | |
| new_input_ids += [PATCH_END_ID] | |
| # print(f"get_external_dict i {i} j {j} new_input_ids {len(new_input_ids)}") | |
| st = img_pos + 1 | |
| new_input_ids += input_ids[st:] | |
| input_ids = new_input_ids | |
| tokens[batch_idx] = input_ids | |
| # ---------------------------------------------------------------- | |
| # video | |
| for batch_idx, input_ids in enumerate(tokens): | |
| # vid_positions = [i for i, x in enumerate(input_ids) if x == VID_CONTEXT_ID] | |
| vid_positions = [i for i, x in enumerate(input_ids) if x == VID_TAG_ID] | |
| if len(vid_positions) == 0: | |
| continue | |
| if video_path_list is not None: | |
| assert len(vid_positions) == len(video_path_list), f"{vid_positions} {video_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
| if image_path_list is not None: | |
| assert len(vid_positions) == len(image_path_list), f"{vid_positions} {image_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
| if image_list is not None: | |
| assert len(vid_positions) == len(image_list), f"{vid_positions} {image_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
| new_input_ids = [] | |
| st = 0 | |
| for vid_idx, vid_pos in enumerate(vid_positions): | |
| if video_path_list is not None: | |
| video_frames, _ = image_processor.process_video(video_path_list[vid_idx], max_num_frame, max_fps) | |
| if image_path_list is not None: | |
| video_frames = image_processor.process_images([image_path_list[vid_idx]]) | |
| if image_list is not None: | |
| video_frames = image_processor.process_images([image_list[vid_idx]]) | |
| images.append(video_frames) | |
| new_input_ids += input_ids[st:vid_pos] | |
| for _ in video_frames: | |
| new_input_ids += [VID_START_ID] | |
| image_indice_b = torch.zeros( | |
| 1, image_token_length, dtype=torch.int64 | |
| ) # This will change in collate_fn | |
| image_indice_s = ( | |
| torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
| .unsqueeze(0) | |
| .repeat(1, 1) | |
| ) | |
| image_indice_b_s = torch.stack( | |
| [image_indice_b, image_indice_s], dim=0 | |
| ) # 2, num_image, image_length | |
| image_indices.append(image_indice_b_s) | |
| new_input_ids += [VID_CONTEXT_ID] * image_token_length | |
| new_input_ids += [VID_END_ID] | |
| st = vid_pos + 1 | |
| new_input_ids += input_ids[st:] | |
| input_ids = new_input_ids | |
| tokens[batch_idx] = input_ids | |
| if len(images) > 0: | |
| images = torch.cat(images, dim=0) | |
| image_indices = torch.cat(image_indices, dim=1) | |
| image_indices = image_indices.contiguous().to(torch.cuda.current_device()) | |
| if True: | |
| images = torch.tensor(images, dtype=torch.bfloat16).contiguous().to(torch.cuda.current_device()) | |
| else: | |
| images = torch.tensor(images, dtype=torch.float16).contiguous().to(torch.cuda.current_device()) | |
| print(f"get_external_inputs images {images.size()}") | |
| print(f"get_external_inputs image_indices {image_indices.size()}") | |
| else: | |
| images = None | |
| image_indices = None | |
| print(f"get_external_inputs images {images}") | |
| print(f"get_external_inputs image_indices {image_indices}") | |
| tokens = torch.tensor(tokens, dtype=torch.long, device='cuda') | |
| print(f"get_external_inputs tokens {tokens.size()}") | |
| return tokens, images, image_indices | |
| ############################################################## | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.generation import GenerationConfig | |
| import torch | |
| import importlib | |
| if importlib.util.find_spec("torch_npu") is not None: | |
| print("Loading torch_npu") | |
| import torch_npu | |
| from torch_npu.contrib import transfer_to_npu | |
| # torch.npu.set_compile_mode(jit_compile=True) | |
| import sys | |
| import os | |
| import natsort | |
| import gradio as gr | |
| import spaces | |
| torch.manual_seed(1234) | |
| model_name_or_path = "VITA-MLLM/Long-VITA-128K_HF" | |
| device_map = "auto" | |
| # device_map = "npu:0" | |
| # torch_dtype=torch.float16 | |
| torch_dtype=torch.bfloat16 | |
| # torch_dtype=torch.float32 | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name_or_path, | |
| trust_remote_code=True | |
| ) | |
| print("tokenizer", tokenizer) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name_or_path, | |
| trust_remote_code=True, | |
| device_map=device_map, | |
| torch_dtype=torch_dtype, | |
| attn_implementation="flash_attention_2", | |
| ).eval() | |
| # print("model", model) | |
| model.generation_config = GenerationConfig.from_pretrained(model_name_or_path, trust_remote_code=True) | |
| model.generation_config.max_new_tokens = 1024 | |
| model.generation_config.chat_format = "chatml" | |
| model.generation_config.max_window_size = 1310720 | |
| model.generation_config.do_sample = False | |
| model.generation_config.use_cache = True | |
| model.generation_config.pad_token_id = tokenizer.pad_token_id | |
| # from cognitron_vl.data.processor.image_processor import ImageProcessor | |
| image_processor = ImageProcessor( | |
| process_type="dynamic", | |
| image_size=448, | |
| normalize_type="imagenet", | |
| min_patch_grid=1, | |
| max_patch_grid=12, | |
| ) | |
| def inference_model(messages, image_path_list, video_path_list): | |
| default_system_message = [ | |
| { | |
| "role": "system", | |
| "content": "You are a helpful AI assistant.", | |
| } | |
| ] | |
| messages = default_system_message + messages | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| ) | |
| # .to("cuda") | |
| print("input", tokenizer.decode(inputs[0], skip_special_tokens=False), flush=True) | |
| inputs, images, image_indices = get_external_inputs(inputs, image_path_list=image_path_list, video_path_list=video_path_list) | |
| # inputs = inputs.to("cuda") | |
| # images = images.to("cuda") | |
| # image_indices = image_indices.to("cuda") | |
| outputs = model.generate(inputs=inputs, images=images, image_indices=image_indices) | |
| # output = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
| output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
| print(f"output {output}", flush=True) | |
| return output | |
| import time | |
| import filetype | |
| font_size = "2.5em" | |
| html = f""" | |
| <p align="center" style="font-size: {font_size}; line-height: 1;"> | |
| <span style="display: inline-block; vertical-align: middle;">{model_name_or_path.split('/')[-1]}</span> | |
| </p> | |
| <center> | |
| <font size=3> | |
| <b>Long-VITA</b> has been fully open-sourced on <a href='https://huggingface.co/VITA-MLLM'>😊 Huggingface</a> and <a href='https://github.com/VITA-MLLM/Long-VITA'>🌟 GitHub</a>. If you find Long-VITA useful, a like❤️ or a star🌟 would be appreciated. | |
| </font> | |
| </center> | |
| """ | |
| def add_message(history, message): | |
| for x in message["files"]: | |
| history.append({"role": "user", "content": {"path": x}}) | |
| if message["text"] is not None: | |
| history.append({"role": "user", "content": message["text"]}) | |
| return history, gr.MultimodalTextbox(value=None, interactive=False) | |
| def bot(history: list): | |
| print("#" * 100) | |
| messages = [] | |
| image_path_list = [] | |
| video_path_list = [] | |
| for message in history: | |
| # print(f"message {message}") | |
| role = message["role"] | |
| content = message["content"] | |
| if isinstance(content, str): | |
| if len(messages) == 0 or messages[-1]["role"] != role: | |
| messages.append( | |
| { | |
| "role": role, | |
| "content": "", | |
| } | |
| ) | |
| messages[-1]["content"] = messages[-1]["content"] + content | |
| else: | |
| for filepath in content: | |
| if filetype.is_image(filepath): | |
| # print(f"{filepath} is a valid image...") | |
| if len(messages) == 0 or messages[-1]["role"] != role: | |
| messages.append( | |
| { | |
| "role": role, | |
| "content": "", | |
| } | |
| ) | |
| messages[-1]["content"] = "<image>" + messages[-1]["content"] | |
| image_path_list.append(filepath) | |
| elif filetype.is_video(filepath): | |
| # print(f"{filepath} is a valid video...") | |
| if len(messages) == 0 or messages[-1]["role"] != role: | |
| messages.append( | |
| { | |
| "role": role, | |
| "content": "", | |
| } | |
| ) | |
| messages[-1]["content"] = "<video>" + messages[-1]["content"] | |
| video_path_list.append(filepath) | |
| print(f"messages {messages}") | |
| print(f"image_path_list {image_path_list}") | |
| print(f"video_path_list {video_path_list}") | |
| if len(image_path_list) == 0: | |
| image_path_list = None | |
| if len(video_path_list) == 0: | |
| video_path_list = None | |
| output = inference_model(messages, image_path_list, video_path_list) | |
| history.append({"role": "assistant", "content": output}) | |
| return history | |
| with gr.Blocks(title=model_name_or_path.split('/')[-1] + "🔥🚀🔥", theme=gr.themes.Ocean()) as demo: | |
| gr.HTML(html) | |
| with gr.Row(): | |
| chatbot = gr.Chatbot(type="messages", elem_id="chatbot", bubble_full_width=False, height=600) | |
| with gr.Row(): | |
| chat_input = gr.MultimodalTextbox( | |
| interactive=True, | |
| file_count="multiple", | |
| file_types=['image', 'video'], | |
| placeholder="Enter message or upload file...", | |
| show_label=False, | |
| # sources=["microphone", "upload"], | |
| sources=["upload"], | |
| ) | |
| chat_msg = chat_input.submit( | |
| add_message, [chatbot, chat_input], [chatbot, chat_input] | |
| ) | |
| bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") | |
| bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
| demo.launch() | |