Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
import streamlit as st
|
3 |
-
import pickle
|
4 |
-
from PyPDF2 import PdfReader
|
5 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
6 |
import os
|
7 |
-
import
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Load environment variables from .env file
|
11 |
load_dotenv()
|
@@ -15,24 +15,14 @@ def chunk_text(text, chunk_size=1000, chunk_overlap=200):
|
|
15 |
chunks = []
|
16 |
i = 0
|
17 |
while i < len(text):
|
18 |
-
# Ensure chunk size and overlap are handled properly
|
19 |
chunks.append(text[i:i + chunk_size])
|
20 |
i += chunk_size - chunk_overlap
|
21 |
return chunks
|
22 |
|
23 |
-
# Function to generate embeddings using transformers
|
24 |
-
def generate_embeddings(text_chunks, model_name='
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
embeddings = []
|
29 |
-
for text in text_chunks:
|
30 |
-
# Tokenize the text and generate embeddings
|
31 |
-
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
32 |
-
with torch.no_grad():
|
33 |
-
outputs = model(**inputs)
|
34 |
-
# Mean pooling on the last hidden state
|
35 |
-
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
|
36 |
return embeddings
|
37 |
|
38 |
# Function to find the most relevant chunk based on the cosine similarity
|
@@ -52,7 +42,6 @@ def main():
|
|
52 |
|
53 |
if pdf is not None:
|
54 |
pdf_reader = PdfReader(pdf)
|
55 |
-
|
56 |
text = ""
|
57 |
for page in pdf_reader.pages:
|
58 |
text += page.extract_text()
|
@@ -89,8 +78,8 @@ def main():
|
|
89 |
result = qa_pipeline(question=query, context=best_chunk)
|
90 |
st.write(result['answer'])
|
91 |
|
92 |
-
|
93 |
-
|
94 |
|
95 |
def set_bg_from_url(url, opacity=1):
|
96 |
footer = """
|
@@ -116,20 +105,5 @@ def set_bg_from_url(url, opacity=1):
|
|
116 |
</footer>
|
117 |
"""
|
118 |
st.markdown(footer, unsafe_allow_html=True)
|
119 |
-
|
120 |
-
# Set background image using
|
121 |
-
st.markdown(
|
122 |
-
f"""
|
123 |
-
<style>
|
124 |
-
body {{
|
125 |
-
background: url('{url}') no-repeat center center fixed;
|
126 |
-
background-size: cover;
|
127 |
-
opacity: {opacity};
|
128 |
-
}}
|
129 |
-
</style>
|
130 |
-
""",
|
131 |
-
unsafe_allow_html=True
|
132 |
-
)
|
133 |
-
|
134 |
-
# Set background image from URL
|
135 |
-
set_bg_from_url("https://www.1access.com/wp-content/uploads/2019/10/GettyImages-1180389186.jpg", opacity=0.875)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import pickle
|
3 |
import numpy as np
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from transformers import pipeline
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import streamlit as st
|
9 |
|
10 |
# Load environment variables from .env file
|
11 |
load_dotenv()
|
|
|
15 |
chunks = []
|
16 |
i = 0
|
17 |
while i < len(text):
|
|
|
18 |
chunks.append(text[i:i + chunk_size])
|
19 |
i += chunk_size - chunk_overlap
|
20 |
return chunks
|
21 |
|
22 |
+
# Function to generate embeddings using sentence-transformers
|
23 |
+
def generate_embeddings(text_chunks, model_name='all-MiniLM-L6-v2'):
|
24 |
+
model = SentenceTransformer(model_name)
|
25 |
+
embeddings = model.encode(text_chunks, convert_to_tensor=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return embeddings
|
27 |
|
28 |
# Function to find the most relevant chunk based on the cosine similarity
|
|
|
42 |
|
43 |
if pdf is not None:
|
44 |
pdf_reader = PdfReader(pdf)
|
|
|
45 |
text = ""
|
46 |
for page in pdf_reader.pages:
|
47 |
text += page.extract_text()
|
|
|
78 |
result = qa_pipeline(question=query, context=best_chunk)
|
79 |
st.write(result['answer'])
|
80 |
|
81 |
+
# Set background image from URL
|
82 |
+
set_bg_from_url("https://www.1access.com/wp-content/uploads/2019/10/GettyImages-1180389186.jpg", opacity=0.5)
|
83 |
|
84 |
def set_bg_from_url(url, opacity=1):
|
85 |
footer = """
|
|
|
105 |
</footer>
|
106 |
"""
|
107 |
st.markdown(footer, unsafe_allow_html=True)
|
108 |
+
|
109 |
+
# Set background image using
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|