Spaces:
Sleeping
Sleeping
File size: 16,907 Bytes
8e3cbf2 33084ca dc6ed77 33084ca 8e3cbf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
from typing import List, Literal, Dict, Optional
from agency_swarm import Agent, Agency, set_openai_key, BaseTool
from pydantic import Field, BaseModel
import streamlit as st
class AnalyzeProjectRequirements(BaseTool):
project_name: str = Field(..., description="Name of the project")
project_description: str = Field(..., description="Project description and goals")
project_type: Literal["Web Application", "Mobile App", "API Development",
"Data Analytics", "AI/ML Solution", "Other"] = Field(...,
description="Type of project")
budget_range: Literal["$10k-$25k", "$25k-$50k", "$50k-$100k", "$100k+"] = Field(...,
description="Budget range for the project")
class ToolConfig:
name = "analyze_project"
description = "Analyzes project requirements and feasibility"
one_call_at_a_time = True
def run(self) -> str:
"""Analyzes project and stores results in shared state"""
if self._shared_state.get("project_analysis", None) is not None:
raise ValueError("Project analysis already exists. Please proceed with technical specification.")
analysis = {
"name": self.project_name,
"type": self.project_type,
"complexity": "high",
"timeline": "6 months",
"budget_feasibility": "within range",
"requirements": ["Scalable architecture", "Security", "API integration"]
}
self._shared_state.set("project_analysis", analysis)
return "Project analysis completed. Please proceed with technical specification."
class CreateTechnicalSpecification(BaseTool):
architecture_type: Literal["monolithic", "microservices", "serverless", "hybrid"] = Field(
...,
description="Proposed architecture type"
)
core_technologies: str = Field(
...,
description="Comma-separated list of main technologies and frameworks"
)
scalability_requirements: Literal["high", "medium", "low"] = Field(
...,
description="Scalability needs"
)
class ToolConfig:
name = "create_technical_spec"
description = "Creates technical specifications based on project analysis"
one_call_at_a_time = True
def run(self) -> str:
"""Creates technical specification based on analysis"""
project_analysis = self._shared_state.get("project_analysis", None)
if project_analysis is None:
raise ValueError("Please analyze project requirements first using AnalyzeProjectRequirements tool.")
spec = {
"project_name": project_analysis["name"],
"architecture": self.architecture_type,
"technologies": self.core_technologies.split(","),
"scalability": self.scalability_requirements
}
self._shared_state.set("technical_specification", spec)
return f"Technical specification created for {project_analysis['name']}."
def init_session_state() -> None:
"""Initialize session state variables"""
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'api_key' not in st.session_state:
st.session_state.api_key = None
def main() -> None:
st.set_page_config(page_title="AI Services Agency", layout="wide")
init_session_state()
st.title("🚀 AI Services Agency")
# API Configuration
with st.sidebar:
st.header("🔑 API Configuration")
openai_api_key = st.text_input(
"OpenAI API Key",
type="password",
help="Enter your OpenAI API key to continue"
)
if openai_api_key:
st.session_state.api_key = openai_api_key
st.success("API Key accepted!")
else:
st.warning("⚠️ Please enter your OpenAI API Key to proceed")
st.markdown("[Get your API key here](https://platform.openai.com/api-keys)")
return
# Initialize agents with the provided API key
set_openai_key(st.session_state.api_key)
api_headers = {"Authorization": f"Bearer {st.session_state.api_key}"}
# Project Input Form
with st.form("project_form"):
st.subheader("Project Details")
project_name = st.text_input("Project Name")
project_description = st.text_area(
"Project Description",
help="Describe the project, its goals, and any specific requirements"
)
col1, col2 = st.columns(2)
with col1:
project_type = st.selectbox(
"Project Type",
["Web Application", "Mobile App", "API Development",
"Data Analytics", "AI/ML Solution", "Other"]
)
timeline = st.selectbox(
"Expected Timeline",
["1-2 months", "3-4 months", "5-6 months", "6+ months"]
)
with col2:
budget_range = st.selectbox(
"Budget Range",
["$10k-$25k", "$25k-$50k", "$50k-$100k", "$100k+"]
)
priority = st.selectbox(
"Project Priority",
["High", "Medium", "Low"]
)
tech_requirements = st.text_area(
"Technical Requirements (optional)",
help="Any specific technical requirements or preferences"
)
special_considerations = st.text_area(
"Special Considerations (optional)",
help="Any additional information or special requirements"
)
submitted = st.form_submit_button("Analyze Project")
if submitted and project_name and project_description:
try:
# Set OpenAI key
set_openai_key(st.session_state.api_key)
# Create agents
ceo = Agent(
name="Project Director",
description="You are a CEO of multiple companies in the past and have a lot of experience in evaluating projects and making strategic decisions.",
instructions="""
You are an experienced CEO who evaluates projects. Follow these steps strictly:
1. FIRST, use the AnalyzeProjectRequirements tool with:
- project_name: The name from the project details
- project_description: The full project description
- project_type: The type of project (Web Application, Mobile App, etc)
- budget_range: The specified budget range
2. WAIT for the analysis to complete before proceeding.
3. Review the analysis results and provide strategic recommendations.
""",
tools=[AnalyzeProjectRequirements],
api_headers=api_headers,
temperature=0.7,
max_prompt_tokens=25000
)
cto = Agent(
name="Technical Architect",
description="Senior technical architect with deep expertise in system design.",
instructions="""
You are a technical architect. Follow these steps strictly:
1. WAIT for the project analysis to be completed by the CEO.
2. Use the CreateTechnicalSpecification tool with:
- architecture_type: Choose from monolithic/microservices/serverless/hybrid
- core_technologies: List main technologies as comma-separated values
- scalability_requirements: Choose high/medium/low based on project needs
3. Review the technical specification and provide additional recommendations.
""",
tools=[CreateTechnicalSpecification],
api_headers=api_headers,
temperature=0.5,
max_prompt_tokens=25000
)
product_manager = Agent(
name="Product Manager",
description="Experienced product manager focused on delivery excellence.",
instructions="""
- Manage project scope and timeline giving the roadmap of the project
- Define product requirements and you should give potential products and features that can be built for the startup
""",
api_headers=api_headers,
temperature=0.4,
max_prompt_tokens=25000
)
developer = Agent(
name="Lead Developer",
description="Senior developer with full-stack expertise.",
instructions="""
- Plan technical implementation
- Provide effort estimates
- Review technical feasibility
""",
api_headers=api_headers,
temperature=0.3,
max_prompt_tokens=25000
)
client_manager = Agent(
name="Client Success Manager",
description="Experienced client manager focused on project delivery.",
instructions="""
- Ensure client satisfaction
- Manage expectations
- Handle feedback
""",
api_headers=api_headers,
temperature=0.6,
max_prompt_tokens=25000
)
# Create agency
agency = Agency(
[
ceo, cto, product_manager, developer, client_manager,
[ceo, cto],
[ceo, product_manager],
[ceo, developer],
[ceo, client_manager],
[cto, developer],
[product_manager, developer],
[product_manager, client_manager]
],
async_mode='threading',
shared_files='shared_files'
)
# Prepare project info
project_info = {
"name": project_name,
"description": project_description,
"type": project_type,
"timeline": timeline,
"budget": budget_range,
"priority": priority,
"technical_requirements": tech_requirements,
"special_considerations": special_considerations
}
st.session_state.messages.append({"role": "user", "content": str(project_info)})
# Create tabs and run analysis
with st.spinner("AI Services Agency is analyzing your project..."):
try:
# Get analysis from each agent using agency.get_completion()
ceo_response = agency.get_completion(
message=f"""Analyze this project using the AnalyzeProjectRequirements tool:
Project Name: {project_name}
Project Description: {project_description}
Project Type: {project_type}
Budget Range: {budget_range}
Use these exact values with the tool and wait for the analysis results.""",
recipient_agent=ceo
)
cto_response = agency.get_completion(
message=f"""Review the project analysis and create technical specifications using the CreateTechnicalSpecification tool.
Choose the most appropriate:
- architecture_type (monolithic/microservices/serverless/hybrid)
- core_technologies (comma-separated list)
- scalability_requirements (high/medium/low)
Base your choices on the project requirements and analysis.""",
recipient_agent=cto
)
pm_response = agency.get_completion(
message=f"Analyze project management aspects: {str(project_info)}",
recipient_agent=product_manager,
additional_instructions="Focus on product-market fit and roadmap development, and coordinate with technical and marketing teams."
)
developer_response = agency.get_completion(
message=f"Analyze technical implementation based on CTO's specifications: {str(project_info)}",
recipient_agent=developer,
additional_instructions="Provide technical implementation details, optimal tech stack you would be using including the costs of cloud services (if any) and feasibility feedback, and coordinate with product manager and CTO to build the required products for the startup."
)
client_response = agency.get_completion(
message=f"Analyze client success aspects: {str(project_info)}",
recipient_agent=client_manager,
additional_instructions="Provide detailed go-to-market strategy and customer acquisition plan, and coordinate with product manager."
)
# Create tabs for different analyses
tabs = st.tabs([
"CEO's Project Analysis",
"CTO's Technical Specification",
"Product Manager's Plan",
"Developer's Implementation",
"Client Success Strategy"
])
with tabs[0]:
st.markdown("## CEO's Strategic Analysis")
st.markdown(ceo_response)
st.session_state.messages.append({"role": "assistant", "content": ceo_response})
with tabs[1]:
st.markdown("## CTO's Technical Specification")
st.markdown(cto_response)
st.session_state.messages.append({"role": "assistant", "content": cto_response})
with tabs[2]:
st.markdown("## Product Manager's Plan")
st.markdown(pm_response)
st.session_state.messages.append({"role": "assistant", "content": pm_response})
with tabs[3]:
st.markdown("## Lead Developer's Development Plan")
st.markdown(developer_response)
st.session_state.messages.append({"role": "assistant", "content": developer_response})
with tabs[4]:
st.markdown("## Client Success Strategy")
st.markdown(client_response)
st.session_state.messages.append({"role": "assistant", "content": client_response})
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
st.error("Please check your inputs and API key and try again.")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
st.error("Please check your API key and try again.")
# Add history management in sidebar
with st.sidebar:
st.subheader("Options")
if st.checkbox("Show Analysis History"):
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if st.button("Clear History"):
st.session_state.messages = []
st.rerun()
if __name__ == "__main__":
main()
|