Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import requests
|
5 |
+
import xmltodict
|
6 |
+
import time
|
7 |
+
import streamlit as st
|
8 |
+
from openai import OpenAI
|
9 |
+
from typing import List, Dict
|
10 |
+
from io import StringIO
|
11 |
+
|
12 |
+
# Configure logging for progress tracking and debugging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Initialize OpenAI client with the DeepSeek model
|
17 |
+
client = OpenAI(
|
18 |
+
base_url="https://api.aimlapi.com/v1",
|
19 |
+
api_key="api-key", # Replace with your AIML API key
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define constants for PubMed API
|
23 |
+
BASE_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
|
24 |
+
SEARCH_URL = f"{BASE_URL}esearch.fcgi"
|
25 |
+
FETCH_URL = f"{BASE_URL}efetch.fcgi"
|
26 |
+
|
27 |
+
class KnowledgeBaseLoader:
|
28 |
+
"""
|
29 |
+
Loads schizophrenia research documents from a JSON file.
|
30 |
+
"""
|
31 |
+
def __init__(self, filepath: str):
|
32 |
+
self.filepath = filepath
|
33 |
+
|
34 |
+
def load_data(self) -> List[Dict]:
|
35 |
+
"""Loads and returns data from the JSON file."""
|
36 |
+
try:
|
37 |
+
with open(self.filepath, "r", encoding="utf-8") as f:
|
38 |
+
data = json.load(f)
|
39 |
+
logger.info(f"Successfully loaded {len(data)} records from '{self.filepath}'.")
|
40 |
+
return data
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Error loading knowledge base: {e}")
|
43 |
+
return []
|
44 |
+
|
45 |
+
class SchizophreniaAgent:
|
46 |
+
"""
|
47 |
+
An agent to answer questions related to schizophrenia using a domain-specific knowledge base.
|
48 |
+
"""
|
49 |
+
def __init__(self, knowledge_base: List[Dict]):
|
50 |
+
self.knowledge_base = knowledge_base
|
51 |
+
|
52 |
+
def process_query(self, query: str) -> str:
|
53 |
+
"""
|
54 |
+
Process the incoming query by searching for matching documents in the knowledge base.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
query: A string containing the user's query.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
A response string summarizing how many documents matched and some sample content.
|
61 |
+
"""
|
62 |
+
if not self.knowledge_base:
|
63 |
+
logger.warning("Knowledge base is empty. Cannot process query.")
|
64 |
+
return "No knowledge base available."
|
65 |
+
|
66 |
+
# Simple matching: count documents where query text is found in abstract
|
67 |
+
matching_docs = []
|
68 |
+
|
69 |
+
for doc in self.knowledge_base:
|
70 |
+
# Ensure abstract is a string (if it's a list, join it into a single string)
|
71 |
+
abstract = doc.get("abstract", [])
|
72 |
+
|
73 |
+
# Check if abstract is a list and join items that are strings
|
74 |
+
if isinstance(abstract, list):
|
75 |
+
abstract = " ".join([str(item) for item in abstract if isinstance(item, str)]).strip()
|
76 |
+
|
77 |
+
if query.lower() in abstract.lower():
|
78 |
+
matching_docs.append(doc)
|
79 |
+
|
80 |
+
logger.info(f"Query '{query}' matched {len(matching_docs)} documents.")
|
81 |
+
|
82 |
+
# For a more robust agent, integrate with an LLM or retrieval system here.
|
83 |
+
if len(matching_docs) > 0:
|
84 |
+
response = (
|
85 |
+
f"Found {len(matching_docs)} documents matching your query. "
|
86 |
+
f"Examples: " +
|
87 |
+
", ".join(f"'{doc.get('title', 'No Title')}'" for doc in matching_docs[:3]) +
|
88 |
+
"."
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
response = "No relevant documents found for your query."
|
92 |
+
|
93 |
+
# Now ask the AIML model (DeepSeek) to generate more user-friendly information
|
94 |
+
aiml_response = self.query_deepseek(query)
|
95 |
+
return response + "\n\nAI-Suggested Guidance:\n" + aiml_response
|
96 |
+
|
97 |
+
def query_deepseek(self, query: str) -> str:
|
98 |
+
"""Query DeepSeek for additional AI-driven responses."""
|
99 |
+
response = client.chat.completions.create(
|
100 |
+
model="deepseek/deepseek-r1",
|
101 |
+
messages=[
|
102 |
+
{"role": "system", "content": "You are an AI assistant who knows everything about schizophrenia."},
|
103 |
+
{"role": "user", "content": query}
|
104 |
+
],
|
105 |
+
)
|
106 |
+
return response.choices[0].message.content
|
107 |
+
|
108 |
+
def fetch_pubmed_papers(query: str, max_results: int = 10):
|
109 |
+
"""
|
110 |
+
Fetch PubMed papers related to the query (e.g., "schizophrenia").
|
111 |
+
|
112 |
+
Args:
|
113 |
+
query (str): The search term to look for in PubMed.
|
114 |
+
max_results (int): The maximum number of results to fetch (default is 10).
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
List of dictionaries containing paper details like title, abstract, etc.
|
118 |
+
"""
|
119 |
+
# Step 1: Search PubMed for articles related to the query
|
120 |
+
search_params = {
|
121 |
+
'db': 'pubmed',
|
122 |
+
'term': query,
|
123 |
+
'retmax': max_results,
|
124 |
+
'retmode': 'xml'
|
125 |
+
}
|
126 |
+
search_response = requests.get(SEARCH_URL, params=search_params)
|
127 |
+
|
128 |
+
if search_response.status_code != 200:
|
129 |
+
print("Error: Unable to fetch search results from PubMed.")
|
130 |
+
return []
|
131 |
+
|
132 |
+
search_data = xmltodict.parse(search_response.text)
|
133 |
+
|
134 |
+
# Step 2: Extract PubMed IDs (PMIDs) from the search results
|
135 |
+
try:
|
136 |
+
pmids = search_data['eSearchResult']['IdList']['Id']
|
137 |
+
except KeyError:
|
138 |
+
print("Error: No PubMed IDs found in search results.")
|
139 |
+
return []
|
140 |
+
|
141 |
+
# Step 3: Fetch the details of the papers using the PMIDs
|
142 |
+
papers = []
|
143 |
+
for pmid in pmids:
|
144 |
+
fetch_params = {
|
145 |
+
'db': 'pubmed',
|
146 |
+
'id': pmid,
|
147 |
+
'retmode': 'xml',
|
148 |
+
'rettype': 'abstract'
|
149 |
+
}
|
150 |
+
fetch_response = requests.get(FETCH_URL, params=fetch_params)
|
151 |
+
|
152 |
+
if fetch_response.status_code != 200:
|
153 |
+
print(f"Error: Unable to fetch details for PMID {pmid}")
|
154 |
+
continue
|
155 |
+
|
156 |
+
fetch_data = xmltodict.parse(fetch_response.text)
|
157 |
+
|
158 |
+
# Extract relevant details for each paper
|
159 |
+
try:
|
160 |
+
paper = fetch_data['PubmedArticleSet']['PubmedArticle']
|
161 |
+
title = paper['MedlineCitation']['Article']['ArticleTitle']
|
162 |
+
abstract = paper['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', 'No abstract available.')
|
163 |
+
journal = paper['MedlineCitation']['Article']['Journal']['Title']
|
164 |
+
year = paper['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year']
|
165 |
+
|
166 |
+
# Store paper details in a dictionary
|
167 |
+
papers.append({
|
168 |
+
'pmid': pmid,
|
169 |
+
'title': title,
|
170 |
+
'abstract': abstract,
|
171 |
+
'journal': journal,
|
172 |
+
'year': year
|
173 |
+
})
|
174 |
+
except KeyError:
|
175 |
+
print(f"Error parsing paper details for PMID {pmid}")
|
176 |
+
continue
|
177 |
+
|
178 |
+
# Add a delay between requests to avoid hitting rate limits
|
179 |
+
time.sleep(1)
|
180 |
+
|
181 |
+
return papers
|
182 |
+
|
183 |
+
# Streamlit User Interface
|
184 |
+
def main():
|
185 |
+
# Set configuration: path to the parsed knowledge base file
|
186 |
+
data_file = os.getenv("SCHIZ_DATA_FILE", "parsed_data.json")
|
187 |
+
|
188 |
+
# Initialize and load the knowledge base
|
189 |
+
loader = KnowledgeBaseLoader(data_file)
|
190 |
+
kb_data = loader.load_data()
|
191 |
+
|
192 |
+
# Initialize the schizophrenia agent with the loaded data
|
193 |
+
agent = SchizophreniaAgent(knowledge_base=kb_data)
|
194 |
+
|
195 |
+
# Streamlit UI setup
|
196 |
+
st.set_page_config(page_title="Schizophrenia Assistant", page_icon="🧠", layout="wide")
|
197 |
+
|
198 |
+
st.title("Schizophrenia Episode Management Assistant")
|
199 |
+
st.markdown(
|
200 |
+
"""
|
201 |
+
This tool helps you manage schizophrenia episodes. You can search PubMed for research papers or provide details about a patient's episode, and the assistant will provide recommendations and guidance.
|
202 |
+
"""
|
203 |
+
)
|
204 |
+
|
205 |
+
# **Part 1: Fetch and Download PubMed Papers**
|
206 |
+
st.header("Fetch and Download PubMed Papers")
|
207 |
+
query = st.text_input("Enter search query (e.g., schizophrenia):", value="schizophrenia")
|
208 |
+
if st.button("Fetch PubMed Papers"):
|
209 |
+
with st.spinner("Fetching papers..."):
|
210 |
+
papers = fetch_pubmed_papers(query, max_results=10)
|
211 |
+
if papers:
|
212 |
+
# Save papers to JSON and provide download link
|
213 |
+
json_data = json.dumps(papers, ensure_ascii=False, indent=4)
|
214 |
+
st.download_button("Download JSON", data=json_data, file_name="pubmed_papers.json", mime="application/json")
|
215 |
+
st.success(f"Successfully fetched {len(papers)} papers related to '{query}'")
|
216 |
+
else:
|
217 |
+
st.error("No papers found. Please try another query.")
|
218 |
+
|
219 |
+
# **Part 2: Upload and Use JSON File**
|
220 |
+
st.header("Upload and Use JSON File for Schizophrenia Assistant")
|
221 |
+
uploaded_file = st.file_uploader("Upload PubMed JSON file", type=["json"])
|
222 |
+
if uploaded_file is not None:
|
223 |
+
file_data = json.load(uploaded_file)
|
224 |
+
st.write("File uploaded successfully. You can now query the assistant.")
|
225 |
+
agent = SchizophreniaAgent(knowledge_base=file_data)
|
226 |
+
|
227 |
+
# User Input for Query
|
228 |
+
user_input = st.text_area("Enter the patient's condition or episode details:", height=200)
|
229 |
+
if st.button("Get Response"):
|
230 |
+
if user_input.strip():
|
231 |
+
with st.spinner("Processing your request..."):
|
232 |
+
answer = agent.process_query(user_input.strip())
|
233 |
+
st.subheader("Response")
|
234 |
+
st.write(answer)
|
235 |
+
else:
|
236 |
+
st.error("Please enter a valid query to get a response.")
|
237 |
+
|
238 |
+
# Run the Streamlit app
|
239 |
+
if __name__ == "__main__":
|
240 |
+
main()
|