|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
import time |
|
from diffusers import DiffusionPipeline, AutoencoderTiny |
|
from custom_pipeline import FluxWithCFGPipeline |
|
from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
DEFAULT_WIDTH = 1024 |
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_INFERENCE_STEPS = 1 |
|
MIN_INFERENCE_STEPS = 1 |
|
MAX_INFERENCE_STEPS = 8 |
|
ENHANCE_STEPS = 2 |
|
|
|
|
|
dtype = torch.float16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype) |
|
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) |
|
|
|
pipe.to(device) |
|
|
|
apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.4)) |
|
|
|
|
|
@spaces.GPU |
|
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False): |
|
"""Generates an image using the FLUX pipeline with error handling.""" |
|
|
|
if pipe is None: |
|
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.") |
|
|
|
if not prompt or prompt.strip() == "": |
|
gr.Warning("Prompt is empty. Please enter a description.") |
|
return None, seed, "Error: Empty prompt" |
|
|
|
start_time = time.time() |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
width = min(width, MAX_IMAGE_SIZE) |
|
height = min(height, MAX_IMAGE_SIZE) |
|
|
|
|
|
steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps |
|
|
|
steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS)) |
|
|
|
try: |
|
|
|
generator = torch.Generator(device=device).manual_seed(int(float(seed))) |
|
|
|
|
|
with torch.inference_mode(): |
|
|
|
|
|
result_img = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=steps_to_use, |
|
generator=generator, |
|
output_type="pil", |
|
return_dict=False |
|
)[0][0] |
|
|
|
latency = time.time() - start_time |
|
latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})" |
|
return result_img, seed, latency_str |
|
|
|
except torch.cuda.OutOfMemoryError as e: |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.") |
|
|
|
except Exception as e: |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
raise gr.Error(f"An error occurred during generation: {e}") |
|
|
|
|
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cute white cat holding a sign that says hello world", |
|
"an anime illustration of Steve Jobs", |
|
"Create image of Modern house in minecraft style", |
|
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", |
|
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", |
|
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", |
|
"High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.", |
|
"Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.", |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(elem_id="app-container"): |
|
gr.Markdown("# 🎨 Realtime FLUX Image Generator") |
|
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") |
|
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2.5): |
|
result = gr.Image(label="Generated Image", show_label=False, interactive=False) |
|
with gr.Column(scale=1): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
placeholder="Describe the image you want to generate...", |
|
lines=3, |
|
show_label=False, |
|
container=False, |
|
) |
|
generateBtn = gr.Button("🖼️ Generate Image") |
|
enhanceBtn = gr.Button("🚀 Enhance Image") |
|
|
|
with gr.Column("Advanced Options"): |
|
with gr.Row(): |
|
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) |
|
latency = gr.Text(label="Latency") |
|
with gr.Row(): |
|
seed = gr.Number(label="Seed", value=42) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) |
|
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) |
|
num_inference_steps = gr.Slider(label="Inference Steps", minimum=MIN_INFERENCE_STEPS, maximum=MAX_INFERENCE_STEPS, step=1, value=DEFAULT_INFERENCE_STEPS) |
|
|
|
with gr.Row(): |
|
gr.Markdown("### 🌟 Inspiration Gallery") |
|
with gr.Row(): |
|
gr.Examples( |
|
examples=examples, |
|
fn=generate_image, |
|
inputs=[prompt], |
|
outputs=[result, seed, latency], |
|
cache_examples=True, |
|
cache_mode="eager" |
|
) |
|
|
|
enhanceBtn.click( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height], |
|
outputs=[result, seed, latency], |
|
show_progress="full" |
|
) |
|
|
|
generateBtn.click( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="full", |
|
api_name="RealtimeFlux", |
|
) |
|
|
|
def update_ui(realtime_enabled): |
|
return { |
|
prompt: gr.update(interactive=True), |
|
generateBtn: gr.update(visible=not realtime_enabled) |
|
} |
|
|
|
def realtime_generation(*args): |
|
if args[0]: |
|
return next(generate_image(*args[1:])) |
|
|
|
realtime.change( |
|
fn=update_ui, |
|
inputs=[realtime], |
|
outputs=[prompt, generateBtn] |
|
) |
|
|
|
prompt.submit( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="full" |
|
) |
|
|
|
for component in [prompt, width, height, num_inference_steps]: |
|
component.input( |
|
fn=realtime_generation, |
|
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="hidden", |
|
trigger_mode="always_last" |
|
) |
|
|
|
|
|
demo.launch() |