Add application file
Browse files- app.py +31 -43
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,52 +1,40 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from segment_anything import sam_model_registry, SamPredictor
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
import cv2
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
MODEL_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
|
| 12 |
-
MODEL_PATH = "sam_vit_b.pth"
|
| 13 |
-
|
| 14 |
-
# Eğer model yoksa indir
|
| 15 |
-
if not os.path.exists(MODEL_PATH):
|
| 16 |
-
print("Model indiriliyor...")
|
| 17 |
-
urllib.request.urlretrieve(MODEL_URL, MODEL_PATH)
|
| 18 |
-
print("Model indirildi.")
|
| 19 |
-
|
| 20 |
-
# Model yükle
|
| 21 |
model_type = "vit_b"
|
| 22 |
-
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
-
sam = sam_model_registry[model_type](checkpoint=MODEL_PATH)
|
| 25 |
-
sam.to(device=device)
|
| 26 |
-
predictor = SamPredictor(sam)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
predictor.set_image(image)
|
| 31 |
-
input_point = np.array([[x, y]])
|
| 32 |
-
input_label = np.array([1])
|
| 33 |
-
masks, _, _ = predictor.predict(
|
| 34 |
-
point_coords=input_point,
|
| 35 |
-
point_labels=input_label,
|
| 36 |
-
multimask_output=False,
|
| 37 |
-
)
|
| 38 |
-
mask = masks[0]
|
| 39 |
-
masked_image = image.copy()
|
| 40 |
-
masked_image[~mask] = 0
|
| 41 |
-
return Image.fromarray(masked_image)
|
| 42 |
-
|
| 43 |
-
with gr.Blocks() as demo:
|
| 44 |
-
with gr.Row():
|
| 45 |
-
image_input = gr.Image(type="pil")
|
| 46 |
-
x = gr.Number(label="X")
|
| 47 |
-
y = gr.Number(label="Y")
|
| 48 |
-
btn = gr.Button("Segment")
|
| 49 |
-
output = gr.Image()
|
| 50 |
-
btn.click(fn=segment, inputs=[image_input, x, y], outputs=output)
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
import cv2
|
| 5 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
# Model yükle
|
| 9 |
+
sam_checkpoint = "sam_vit_b.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
model_type = "vit_b"
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
| 14 |
+
sam.to(device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
mask_generator = SamAutomaticMaskGenerator(sam)
|
| 17 |
+
|
| 18 |
+
def segment_all_objects(image):
|
| 19 |
+
image_np = np.array(image)
|
| 20 |
+
masks = mask_generator.generate(image_np)
|
| 21 |
+
|
| 22 |
+
# Maske üzerine çiz
|
| 23 |
+
overlay = image_np.copy()
|
| 24 |
+
for i, mask in enumerate(masks):
|
| 25 |
+
m = mask["segmentation"]
|
| 26 |
+
color = np.random.randint(0, 255, size=(3,))
|
| 27 |
+
overlay[m] = overlay[m] * 0.3 + color * 0.7
|
| 28 |
+
# Maske üstüne label yaz
|
| 29 |
+
y, x = np.where(m)
|
| 30 |
+
if len(x) > 0 and len(y) > 0:
|
| 31 |
+
cx, cy = int(np.mean(x)), int(np.mean(y))
|
| 32 |
+
cv2.putText(overlay, f"Obj {i+1}", (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
|
| 33 |
+
|
| 34 |
+
return Image.fromarray(overlay.astype(np.uint8))
|
| 35 |
+
|
| 36 |
+
gr.Interface(
|
| 37 |
+
fn=segment_all_objects,
|
| 38 |
+
inputs=gr.Image(type="pil"),
|
| 39 |
+
outputs=gr.Image()
|
| 40 |
+
).launch()
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
gradio
|
| 2 |
torch
|
|
|
|
| 3 |
opencv-python
|
| 4 |
numpy
|
| 5 |
Pillow
|
| 6 |
git+https://github.com/facebookresearch/segment-anything.git
|
| 7 |
-
torchvision
|
|
|
|
| 1 |
gradio
|
| 2 |
torch
|
| 3 |
+
torchvision
|
| 4 |
opencv-python
|
| 5 |
numpy
|
| 6 |
Pillow
|
| 7 |
git+https://github.com/facebookresearch/segment-anything.git
|
|
|