Spaces:
Sleeping
Sleeping
sevda
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
-
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 4 |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline
|
| 5 |
import gradio as gr
|
| 6 |
|
|
|
|
| 7 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 8 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 9 |
WHISPER_SAMPLE_RATE = 16000
|
| 10 |
|
|
|
|
| 11 |
model_id = "ixxan/whisper-small-thugy20"
|
| 12 |
-
|
| 13 |
processor = AutoProcessor.from_pretrained("ixxan/whisper-small-thugy20")
|
| 14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 15 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
|
@@ -26,37 +26,48 @@ pipe = pipeline(
|
|
| 26 |
)
|
| 27 |
|
| 28 |
def preprocess_audio(audio_path: str) -> torch.Tensor:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
audio
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
audio_input = preprocess_audio(audio_path)
|
| 44 |
-
input_features = processor(
|
| 45 |
-
audio_input,
|
| 46 |
-
sampling_rate=WHISPER_SAMPLE_RATE,
|
| 47 |
-
return_tensors="pt",
|
| 48 |
-
# language="Chinese",
|
| 49 |
-
).input_features.to(DEVICE)
|
| 50 |
-
|
| 51 |
-
predicted_ids = model.generate(input_features)
|
| 52 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 53 |
-
return transcription
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
| 56 |
iface = gr.Interface(
|
| 57 |
fn=transcribe,
|
| 58 |
inputs=gr.Audio(type="filepath"),
|
| 59 |
outputs="text",
|
| 60 |
title="Uyghur Speech Recognition",
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
|
|
|
| 3 |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# Setup device
|
| 7 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 8 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 9 |
WHISPER_SAMPLE_RATE = 16000
|
| 10 |
|
| 11 |
+
# Load model and processor
|
| 12 |
model_id = "ixxan/whisper-small-thugy20"
|
|
|
|
| 13 |
processor = AutoProcessor.from_pretrained("ixxan/whisper-small-thugy20")
|
| 14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 15 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
def preprocess_audio(audio_path: str) -> torch.Tensor:
|
| 29 |
+
try:
|
| 30 |
+
audio, sample_rate = torchaudio.load(audio_path)
|
| 31 |
+
# Resample if necessary
|
| 32 |
+
if sample_rate != WHISPER_SAMPLE_RATE:
|
| 33 |
+
resampler = torchaudio.transforms.Resample(
|
| 34 |
+
orig_freq=sample_rate, new_freq=WHISPER_SAMPLE_RATE
|
| 35 |
+
)
|
| 36 |
+
audio = resampler(audio)
|
| 37 |
+
# Convert to mono
|
| 38 |
+
if audio.shape[0] > 1:
|
| 39 |
+
audio = torch.mean(audio, dim=0)
|
| 40 |
+
return audio.squeeze()
|
| 41 |
+
except Exception as e:
|
| 42 |
+
raise RuntimeError(f"Error processing audio file: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
def transcribe(audio_path):
|
| 45 |
+
try:
|
| 46 |
+
if audio_path is None:
|
| 47 |
+
return "No audio provided. Please record or upload an audio file."
|
| 48 |
+
|
| 49 |
+
audio_input = preprocess_audio(audio_path)
|
| 50 |
+
input_features = processor(
|
| 51 |
+
audio_input,
|
| 52 |
+
sampling_rate=WHISPER_SAMPLE_RATE,
|
| 53 |
+
return_tensors="pt",
|
| 54 |
+
).input_features.to(DEVICE)
|
| 55 |
+
predicted_ids = model.generate(input_features)
|
| 56 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 57 |
+
return transcription
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return f"Error transcribing audio: {str(e)}"
|
| 60 |
|
| 61 |
+
# Create Gradio interface
|
| 62 |
iface = gr.Interface(
|
| 63 |
fn=transcribe,
|
| 64 |
inputs=gr.Audio(type="filepath"),
|
| 65 |
outputs="text",
|
| 66 |
title="Uyghur Speech Recognition",
|
| 67 |
+
description="Upload or record audio in Uyghur to get its transcription.",
|
| 68 |
+
examples=[], # You can add example audio files here if you have them
|
| 69 |
)
|
| 70 |
+
|
| 71 |
+
# Launch the app
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
iface.launch()
|