qg_benchmark / app.py
Serhan Yılmaz
init
c1ff2ef
raw
history blame
6.5 kB
import os
import logging
import json
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from openai import OpenAI
from typing import List, Tuple, Dict
from dotenv import load_dotenv
from transformers import pipeline
import asyncio
# Import the required functions from the pipeline file
from pipeline_gradio_experimental import generate_basic_question, rank_questions_with_details
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
# Load the SQuAD dataset
dataset = load_dataset("squad")
# Initialize the question answering pipeline
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
def get_random_entry():
random_index = random.randint(0, len(dataset['train']) - 1)
entry = dataset['train'][random_index]
return entry['context'], entry['answers']['text'][0], entry['question']
def generate_answer(context: str, question: str) -> str:
try:
result = qa_pipeline(question=question, context=context)
return result['answer']
except Exception as e:
logger.error(f"Error in generate_answer: {e}")
return "Failed to generate answer"
def compare_questions(context: str, original_answer: str, question1: str, answer1: str, question2: str, answer2: str) -> Dict[str, any]:
try:
response = client.chat.completions.create(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are an expert in evaluating question-answer pairs based on a given context."},
{"role": "user", "content": f"""Compare the following two question-answer pairs based on the given context and original answer. Evaluate their quality and relevance.
Context: {context}
Original Answer: {original_answer}
Question 1: {question1}
Answer 1: {answer1}
Question 2: {question2}
Answer 2: {answer2}
Score each question-answer pair on a scale of 0 to 10 based on the quality and relevance of the question and answer. Provide an explanation for your evaluation. Focus on how well the new answer matches the old answer considering the context. Make sure to grade one higher than the other."""}
],
response_format={
"type": "json_schema",
"json_schema": {
"name": "question_comparison_evaluator",
"strict": True,
"schema": {
"type": "object",
"properties": {
"question1_score": {"type": "number"},
"question2_score": {"type": "number"},
"explanation": {"type": "string"}
},
"required": ["question1_score", "question2_score", "explanation"],
"additionalProperties": False
}
}
}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
logger.error(f"Error in comparing questions: {e}")
return {"question1_score": 0, "question2_score": 0, "explanation": "Failed to compare questions"}
async def process_random_entry(progress=gr.Progress()):
context, original_answer, original_question = get_random_entry()
# Yield the original context, question, and answer immediately
yield context, original_question, original_answer, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Simulate some processing time
await asyncio.sleep(1)
progress(0.3, desc="Generating questions...")
basic_question = generate_basic_question(context, original_answer)
_, _, enhanced_question = rank_questions_with_details(context, original_answer)
await asyncio.sleep(1)
progress(0.6, desc="Generating answers...")
basic_answer = generate_answer(context, basic_question)
enhanced_answer = generate_answer(context, enhanced_question)
await asyncio.sleep(1)
progress(0.9, desc="Comparing questions...")
comparison_result = compare_questions(context, original_answer, basic_question, basic_answer, enhanced_question, enhanced_answer)
winner = "Basic" if comparison_result["question1_score"] > comparison_result["question2_score"] else "Enhanced"
# Yield the final results
yield (
context,
original_question,
original_answer,
gr.update(visible=True),
gr.update(visible=True, value=f"Question: {basic_question}\nAnswer: {basic_answer}"),
gr.update(visible=True, value=f"Question: {enhanced_question}\nAnswer: {enhanced_answer}"),
gr.update(visible=True, value=f"Question 1 Score: {comparison_result['question1_score']}\n"
f"Question 2 Score: {comparison_result['question2_score']}\n"
f"Explanation: {comparison_result['explanation']}\n"
f"Winner: {winner} Generation")
)
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as iface:
gr.Markdown("# Question Generation and Comparison")
gr.Markdown("Click the button to get a random entry from the SQuAD dataset and compare basic and enhanced question generation.")
random_button = gr.Button("Get Random Question")
with gr.Column(visible=False) as output_column:
context_output = gr.Textbox(label="Original Context")
original_question_output = gr.Textbox(label="Original Question")
original_answer_output = gr.Textbox(label="Original Answer")
basic_generation_output = gr.Textbox(label="Basic Generation", visible=False)
enhanced_generation_output = gr.Textbox(label="Enhanced Generation", visible=False)
comparison_result_output = gr.Textbox(label="Comparison Result", visible=False)
random_button.click(
fn=process_random_entry,
outputs=[
context_output,
original_question_output,
original_answer_output,
output_column,
basic_generation_output,
enhanced_generation_output,
comparison_result_output
]
)
# Launch the app
if __name__ == "__main__":
iface.launch()