Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -35,15 +35,13 @@ def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_ke
|
|
35 |
try:
|
36 |
tokenizer = AutoTokenizer.from_pretrained(
|
37 |
model_identifier,
|
38 |
-
trust_remote_code=True
|
39 |
-
use_auth_token=False # Ensure we're not using auth for public models
|
40 |
)
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
model_identifier,
|
43 |
torch_dtype=torch.bfloat16,
|
44 |
device_map="auto",
|
45 |
-
trust_remote_code=True
|
46 |
-
use_auth_token=False # Ensure we're not using auth for public models
|
47 |
)
|
48 |
model.eval()
|
49 |
|
@@ -54,13 +52,35 @@ def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_ke
|
|
54 |
|
55 |
_models_cache[model_key] = model
|
56 |
_models_cache[tokenizer_key] = tokenizer
|
57 |
-
print(f"
|
58 |
return model, tokenizer
|
59 |
except Exception as e:
|
60 |
-
print(f"ERROR loading {model_key} model ({model_identifier}): {e}")
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
_models_cache[model_key] = "error"
|
65 |
_models_cache[tokenizer_key] = "error"
|
66 |
raise
|
@@ -189,6 +209,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="π¬ CineGuide Comparison") as dem
|
|
189 |
Type your movie-related query below and see how fine-tuning improves movie recommendations!
|
190 |
|
191 |
β οΈ **Note:** Models are loaded on first use and may take 30-60 seconds initially.
|
|
|
192 |
"""
|
193 |
)
|
194 |
|
|
|
35 |
try:
|
36 |
tokenizer = AutoTokenizer.from_pretrained(
|
37 |
model_identifier,
|
38 |
+
trust_remote_code=True
|
|
|
39 |
)
|
40 |
model = AutoModelForCausalLM.from_pretrained(
|
41 |
model_identifier,
|
42 |
torch_dtype=torch.bfloat16,
|
43 |
device_map="auto",
|
44 |
+
trust_remote_code=True
|
|
|
45 |
)
|
46 |
model.eval()
|
47 |
|
|
|
52 |
|
53 |
_models_cache[model_key] = model
|
54 |
_models_cache[tokenizer_key] = tokenizer
|
55 |
+
print(f"β
Successfully loaded {model_key} model!")
|
56 |
return model, tokenizer
|
57 |
except Exception as e:
|
58 |
+
print(f"β ERROR loading {model_key} model ({model_identifier}): {e}")
|
59 |
+
|
60 |
+
# FALLBACK: Use base model if fine-tuned model fails
|
61 |
+
if model_key == "finetuned" and model_identifier != BASE_MODEL_ID:
|
62 |
+
print(f"π FALLBACK: Loading base model instead for fine-tuned model...")
|
63 |
+
try:
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
BASE_MODEL_ID,
|
67 |
+
torch_dtype=torch.bfloat16,
|
68 |
+
device_map="auto",
|
69 |
+
trust_remote_code=True
|
70 |
+
)
|
71 |
+
model.eval()
|
72 |
+
if tokenizer.pad_token is None:
|
73 |
+
tokenizer.pad_token = tokenizer.eos_token
|
74 |
+
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
75 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
76 |
+
|
77 |
+
_models_cache[model_key] = model
|
78 |
+
_models_cache[tokenizer_key] = tokenizer
|
79 |
+
print(f"β
FALLBACK successful! Using base model with CineGuide prompt.")
|
80 |
+
return model, tokenizer
|
81 |
+
except Exception as fallback_e:
|
82 |
+
print(f"β FALLBACK also failed: {fallback_e}")
|
83 |
+
|
84 |
_models_cache[model_key] = "error"
|
85 |
_models_cache[tokenizer_key] = "error"
|
86 |
raise
|
|
|
209 |
Type your movie-related query below and see how fine-tuning improves movie recommendations!
|
210 |
|
211 |
β οΈ **Note:** Models are loaded on first use and may take 30-60 seconds initially.
|
212 |
+
π‘ **Fallback:** If fine-tuned model fails, will use base model with specialized prompting.
|
213 |
"""
|
214 |
)
|
215 |
|