Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -57,7 +57,20 @@ def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_ke
|
|
57 |
_models_cache[tokenizer_key] = "error"
|
58 |
raise
|
59 |
|
60 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""Generate response using specified model type."""
|
62 |
model, tokenizer = None, None
|
63 |
system_prompt = ""
|
@@ -91,94 +104,69 @@ def generate_chat_response(message: str, chat_history: list, model_type_to_load:
|
|
91 |
if system_prompt:
|
92 |
conversation.append({"role": "system", "content": system_prompt})
|
93 |
|
94 |
-
#
|
95 |
-
|
|
|
96 |
conversation.append({"role": "user", "content": message})
|
97 |
|
98 |
-
# Generate response
|
99 |
-
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
100 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
|
101 |
-
|
102 |
-
# Prepare EOS tokens
|
103 |
-
eos_tokens_ids = [tokenizer.eos_token_id]
|
104 |
-
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
105 |
-
if im_end_id != getattr(tokenizer, 'unk_token_id', None):
|
106 |
-
eos_tokens_ids.append(im_end_id)
|
107 |
-
eos_tokens_ids = list(set(eos_tokens_ids))
|
108 |
-
|
109 |
-
# Generate
|
110 |
-
with torch.no_grad():
|
111 |
-
generated_token_ids = model.generate(
|
112 |
-
**inputs,
|
113 |
-
max_new_tokens=512,
|
114 |
-
do_sample=True,
|
115 |
-
temperature=0.7,
|
116 |
-
top_p=0.9,
|
117 |
-
repetition_penalty=1.1,
|
118 |
-
pad_token_id=tokenizer.pad_token_id,
|
119 |
-
eos_token_id=eos_tokens_ids
|
120 |
-
)
|
121 |
-
|
122 |
-
new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
|
123 |
-
response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip().replace("<|im_end|>", "").strip()
|
124 |
-
|
125 |
-
# Stream the response
|
126 |
-
full_response = ""
|
127 |
-
for char in response_text:
|
128 |
-
full_response += char
|
129 |
-
time.sleep(0.005)
|
130 |
-
yield full_response
|
131 |
-
|
132 |
-
@spaces.GPU
|
133 |
-
def base_model_predict(user_message, chat_history):
|
134 |
-
"""Predict using base model - decorated with @spaces.GPU."""
|
135 |
-
try:
|
136 |
-
bot_response_stream = generate_chat_response(user_message, chat_history, "base")
|
137 |
-
for chunk in bot_response_stream:
|
138 |
-
yield chunk
|
139 |
-
except Exception as e:
|
140 |
-
print(f"Error in base_model_predict: {e}")
|
141 |
-
yield f"Error generating base model response: {str(e)}"
|
142 |
-
|
143 |
-
@spaces.GPU
|
144 |
-
def ft_model_predict(user_message, chat_history):
|
145 |
-
"""Predict using fine-tuned model - decorated with @spaces.GPU."""
|
146 |
try:
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
-
print(f"Error
|
152 |
-
yield f"Error
|
153 |
-
|
154 |
-
def format_chat_history(history, message):
|
155 |
-
"""Format the chat history for the models."""
|
156 |
-
formatted_history = []
|
157 |
-
for chat in history:
|
158 |
-
if isinstance(chat, dict) and 'role' in chat:
|
159 |
-
formatted_history.append(chat)
|
160 |
-
elif isinstance(chat, list) and len(chat) == 2:
|
161 |
-
formatted_history.extend([
|
162 |
-
{"role": "user", "content": chat[0]},
|
163 |
-
{"role": "assistant", "content": chat[1]}
|
164 |
-
])
|
165 |
-
return formatted_history
|
166 |
|
167 |
def respond_base(message, history):
|
168 |
"""Handle base model response for Gradio ChatInterface."""
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
174 |
|
175 |
def respond_ft(message, history):
|
176 |
"""Handle fine-tuned model response for Gradio ChatInterface."""
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
182 |
|
183 |
# --- Gradio UI Definition ---
|
184 |
with gr.Blocks(theme=gr.themes.Soft(), title="🎬 CineGuide Comparison") as demo:
|
|
|
57 |
_models_cache[tokenizer_key] = "error"
|
58 |
raise
|
59 |
|
60 |
+
def convert_gradio_history_to_messages(history):
|
61 |
+
"""Convert Gradio ChatInterface history format to messages format."""
|
62 |
+
messages = []
|
63 |
+
for exchange in history:
|
64 |
+
if isinstance(exchange, (list, tuple)) and len(exchange) == 2:
|
65 |
+
user_msg, assistant_msg = exchange
|
66 |
+
if user_msg: # Only add if not empty
|
67 |
+
messages.append({"role": "user", "content": str(user_msg)})
|
68 |
+
if assistant_msg: # Only add if not empty
|
69 |
+
messages.append({"role": "assistant", "content": str(assistant_msg)})
|
70 |
+
return messages
|
71 |
+
|
72 |
+
@spaces.GPU
|
73 |
+
def generate_chat_response(message: str, history: list, model_type_to_load: str):
|
74 |
"""Generate response using specified model type."""
|
75 |
model, tokenizer = None, None
|
76 |
system_prompt = ""
|
|
|
104 |
if system_prompt:
|
105 |
conversation.append({"role": "system", "content": system_prompt})
|
106 |
|
107 |
+
# Convert and add chat history
|
108 |
+
formatted_history = convert_gradio_history_to_messages(history)
|
109 |
+
conversation.extend(formatted_history)
|
110 |
conversation.append({"role": "user", "content": message})
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
try:
|
113 |
+
# Generate response
|
114 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
115 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
|
116 |
+
|
117 |
+
# Prepare EOS tokens
|
118 |
+
eos_tokens_ids = [tokenizer.eos_token_id]
|
119 |
+
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
120 |
+
if im_end_id != getattr(tokenizer, 'unk_token_id', None):
|
121 |
+
eos_tokens_ids.append(im_end_id)
|
122 |
+
eos_tokens_ids = list(set(eos_tokens_ids))
|
123 |
+
|
124 |
+
# Generate
|
125 |
+
with torch.no_grad():
|
126 |
+
generated_token_ids = model.generate(
|
127 |
+
**inputs,
|
128 |
+
max_new_tokens=512,
|
129 |
+
do_sample=True,
|
130 |
+
temperature=0.7,
|
131 |
+
top_p=0.9,
|
132 |
+
repetition_penalty=1.1,
|
133 |
+
pad_token_id=tokenizer.pad_token_id,
|
134 |
+
eos_token_id=eos_tokens_ids
|
135 |
+
)
|
136 |
+
|
137 |
+
new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
|
138 |
+
response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip().replace("<|im_end|>", "").strip()
|
139 |
+
|
140 |
+
# Stream the response
|
141 |
+
full_response = ""
|
142 |
+
for char in response_text:
|
143 |
+
full_response += char
|
144 |
+
time.sleep(0.005)
|
145 |
+
yield full_response
|
146 |
+
|
147 |
except Exception as e:
|
148 |
+
print(f"Error during generation: {e}")
|
149 |
+
yield f"Error during text generation: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
def respond_base(message, history):
|
152 |
"""Handle base model response for Gradio ChatInterface."""
|
153 |
+
try:
|
154 |
+
response_gen = generate_chat_response(message, history, "base")
|
155 |
+
for response in response_gen:
|
156 |
+
yield response
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error in respond_base: {e}")
|
159 |
+
yield f"Error: {str(e)}"
|
160 |
|
161 |
def respond_ft(message, history):
|
162 |
"""Handle fine-tuned model response for Gradio ChatInterface."""
|
163 |
+
try:
|
164 |
+
response_gen = generate_chat_response(message, history, "finetuned")
|
165 |
+
for response in response_gen:
|
166 |
+
yield response
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error in respond_ft: {e}")
|
169 |
+
yield f"Error: {str(e)}"
|
170 |
|
171 |
# --- Gradio UI Definition ---
|
172 |
with gr.Blocks(theme=gr.themes.Soft(), title="🎬 CineGuide Comparison") as demo:
|