Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +267 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
| 4 |
+
import time
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# --- Configuration ---
|
| 8 |
+
BASE_MODEL_ID = "Qwen/Qwen2.5-7B-Instruct"
|
| 9 |
+
# NOW, this points to your model on the Hugging Face Hub
|
| 10 |
+
FINETUNED_MODEL_ID = "serhany/cineguide-qwen2.5-7b-instruct-ft"
|
| 11 |
+
|
| 12 |
+
# System prompts (same as before)
|
| 13 |
+
SYSTEM_PROMPT_CINEGUIDE = """You are CineGuide, a knowledgeable and friendly movie recommendation assistant. Your goal is to:
|
| 14 |
+
1. Provide personalized movie recommendations based on user preferences
|
| 15 |
+
2. Give brief, compelling rationales for why you recommend each movie
|
| 16 |
+
3. Ask thoughtful follow-up questions to better understand user tastes
|
| 17 |
+
4. Maintain an enthusiastic but not overwhelming tone about cinema
|
| 18 |
+
|
| 19 |
+
When recommending movies, always explain WHY the movie fits their preferences."""
|
| 20 |
+
SYSTEM_PROMPT_BASE = "You are a helpful AI assistant."
|
| 21 |
+
|
| 22 |
+
# --- Model Loading ---
|
| 23 |
+
_models_cache = {}
|
| 24 |
+
|
| 25 |
+
def get_model_and_tokenizer(model_id_or_path, is_local_path=False): # Added is_local_path for flexibility
|
| 26 |
+
if model_id_or_path in _models_cache:
|
| 27 |
+
return _models_cache[model_id_or_path]
|
| 28 |
+
|
| 29 |
+
print(f"Loading model: {model_id_or_path}")
|
| 30 |
+
# For models from Hub, trust_remote_code is often needed for custom architectures like Qwen
|
| 31 |
+
# For local paths, it might also be needed if they were saved with trust_remote_code=True
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id_or_path, trust_remote_code=True)
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_id_or_path,
|
| 35 |
+
torch_dtype=torch.bfloat16,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
trust_remote_code=True,
|
| 38 |
+
# attn_implementation="flash_attention_2" # Optional
|
| 39 |
+
)
|
| 40 |
+
model.eval()
|
| 41 |
+
|
| 42 |
+
if tokenizer.pad_token is None:
|
| 43 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 44 |
+
# Ensure pad_token_id is also set if pad_token is set
|
| 45 |
+
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
| 46 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
_models_cache[model_id_or_path] = (model, tokenizer)
|
| 50 |
+
print(f"Finished loading: {model_id_or_path}")
|
| 51 |
+
return model, tokenizer
|
| 52 |
+
|
| 53 |
+
print("Pre-loading models...")
|
| 54 |
+
model_base, tokenizer_base = None, None
|
| 55 |
+
model_ft, tokenizer_ft = None, None
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
model_base, tokenizer_base = get_model_and_tokenizer(BASE_MODEL_ID)
|
| 59 |
+
print("Base model loaded.")
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error loading base model ({BASE_MODEL_ID}): {e}")
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
model_ft, tokenizer_ft = get_model_and_tokenizer(FINETUNED_MODEL_ID)
|
| 65 |
+
print("Fine-tuned model loaded.")
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error loading fine-tuned model ({FINETUNED_MODEL_ID}): {e}")
|
| 68 |
+
|
| 69 |
+
print("Model pre-loading complete.")
|
| 70 |
+
|
| 71 |
+
# --- Inference Function (generate_chat_response) ---
|
| 72 |
+
# This function remains largely the same as in the previous app.py.
|
| 73 |
+
# Make sure it uses `model_base, tokenizer_base` and `model_ft, tokenizer_ft` correctly.
|
| 74 |
+
def generate_chat_response(message: str, chat_history: list, model_type: str):
|
| 75 |
+
# ... (Keep the exact same generate_chat_response function from the previous app.py)
|
| 76 |
+
if model_type == "base":
|
| 77 |
+
if model_base is None or tokenizer_base is None:
|
| 78 |
+
yield f"Base model ({BASE_MODEL_ID}) is not available."
|
| 79 |
+
return
|
| 80 |
+
model, tokenizer = model_base, tokenizer_base
|
| 81 |
+
system_prompt = SYSTEM_PROMPT_BASE
|
| 82 |
+
elif model_type == "finetuned":
|
| 83 |
+
if model_ft is None or tokenizer_ft is None:
|
| 84 |
+
yield f"Fine-tuned model ({FINETUNED_MODEL_ID}) is not available."
|
| 85 |
+
return
|
| 86 |
+
model, tokenizer = model_ft, tokenizer_ft
|
| 87 |
+
system_prompt = SYSTEM_PROMPT_CINEGUIDE
|
| 88 |
+
else:
|
| 89 |
+
yield "Invalid model type."
|
| 90 |
+
return
|
| 91 |
+
|
| 92 |
+
conversation = []
|
| 93 |
+
if system_prompt:
|
| 94 |
+
conversation.append({"role": "system", "content": system_prompt})
|
| 95 |
+
|
| 96 |
+
for user_msg, assistant_msg in chat_history:
|
| 97 |
+
if user_msg: # Ensure user_msg is not None
|
| 98 |
+
conversation.append({"role": "user", "content": user_msg})
|
| 99 |
+
if assistant_msg: # Ensure assistant_msg is not None
|
| 100 |
+
conversation.append({"role": "assistant", "content": assistant_msg})
|
| 101 |
+
conversation.append({"role": "user", "content": message})
|
| 102 |
+
|
| 103 |
+
prompt = tokenizer.apply_chat_template(
|
| 104 |
+
conversation,
|
| 105 |
+
tokenize=False,
|
| 106 |
+
add_generation_prompt=True
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
|
| 110 |
+
|
| 111 |
+
full_response = ""
|
| 112 |
+
# Make sure eos_token_id is a list if multiple EOS tokens are possible
|
| 113 |
+
eos_tokens_ids = [tokenizer.eos_token_id]
|
| 114 |
+
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 115 |
+
if im_end_id != tokenizer.unk_token_id: # Check if <|im_end|> is in vocab
|
| 116 |
+
eos_tokens_ids.append(im_end_id)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
generated_token_ids = model.generate(
|
| 120 |
+
**inputs,
|
| 121 |
+
max_new_tokens=512,
|
| 122 |
+
do_sample=True,
|
| 123 |
+
temperature=0.7,
|
| 124 |
+
top_p=0.9,
|
| 125 |
+
repetition_penalty=1.1,
|
| 126 |
+
pad_token_id=tokenizer.pad_token_id, # Use pad_token_id
|
| 127 |
+
eos_token_id=eos_tokens_ids
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
|
| 131 |
+
response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
| 132 |
+
response_text = response_text.replace("<|im_end|>", "").strip()
|
| 133 |
+
|
| 134 |
+
for char in response_text:
|
| 135 |
+
full_response += char
|
| 136 |
+
time.sleep(0.005)
|
| 137 |
+
yield full_response
|
| 138 |
+
|
| 139 |
+
def respond_base(message, chat_history):
|
| 140 |
+
yield from generate_chat_response(message, chat_history, "base")
|
| 141 |
+
|
| 142 |
+
def respond_finetuned(message, chat_history):
|
| 143 |
+
yield from generate_chat_response(message, chat_history, "finetuned")
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# --- Gradio UI (with gr.Blocks as demo:) ---
|
| 147 |
+
# This part remains largely the same as the previous app.py
|
| 148 |
+
# Ensure the Markdown and labels correctly reference the models being loaded.
|
| 149 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 150 |
+
gr.Markdown(
|
| 151 |
+
f"""
|
| 152 |
+
# 🎬 CineGuide vs. Base {BASE_MODEL_ID}
|
| 153 |
+
Compare the fine-tuned CineGuide movie recommender (loaded from `{FINETUNED_MODEL_ID}`)
|
| 154 |
+
with the base {BASE_MODEL_ID} model.
|
| 155 |
+
Type your movie-related query below and see how each model responds!
|
| 156 |
+
"""
|
| 157 |
+
)
|
| 158 |
+
# ... (Rest of the UI definition: Rows, Columns, Chatbots, Textbox, Button, Examples)
|
| 159 |
+
with gr.Row():
|
| 160 |
+
with gr.Column(scale=1):
|
| 161 |
+
gr.Markdown(f"## 🗣️ Base {BASE_MODEL_ID}")
|
| 162 |
+
chatbot_base = gr.Chatbot(label="Base Model Chat", height=500, bubble_full_width=False)
|
| 163 |
+
if model_base is None:
|
| 164 |
+
gr.Markdown(f"⚠️ Base model ({BASE_MODEL_ID}) could not be loaded.")
|
| 165 |
+
|
| 166 |
+
with gr.Column(scale=1):
|
| 167 |
+
gr.Markdown(f"## 🤖 Fine-tuned CineGuide (from {FINETUNED_MODEL_ID})")
|
| 168 |
+
chatbot_ft = gr.Chatbot(label="CineGuide Chat", height=500, bubble_full_width=False)
|
| 169 |
+
if model_ft is None:
|
| 170 |
+
gr.Markdown(f"⚠️ Fine-tuned model ({FINETUNED_MODEL_ID}) could not be loaded.")
|
| 171 |
+
|
| 172 |
+
with gr.Row():
|
| 173 |
+
shared_input_textbox = gr.Textbox(
|
| 174 |
+
show_label=False,
|
| 175 |
+
placeholder="Enter your movie query here and press Enter...",
|
| 176 |
+
container=False,
|
| 177 |
+
scale=7,
|
| 178 |
+
)
|
| 179 |
+
submit_button = gr.Button("✉️ Send", variant="primary", scale=1)
|
| 180 |
+
|
| 181 |
+
gr.Examples(
|
| 182 |
+
examples=[
|
| 183 |
+
"Hi! I'm looking for something funny to watch tonight.",
|
| 184 |
+
"I love dry, witty humor more than slapstick. Think more British comedy style.",
|
| 185 |
+
"I'm really into complex sci-fi movies that make you think. I loved Arrival and Blade Runner 2049.",
|
| 186 |
+
"I need help planning a family movie night. We have kids aged 8, 11, and 14, plus adults.",
|
| 187 |
+
"I'm going through a tough breakup and need something uplifting but not cheesy romantic.",
|
| 188 |
+
"I loved Parasite and want to explore more international cinema. Where should I start?",
|
| 189 |
+
],
|
| 190 |
+
inputs=[shared_input_textbox],
|
| 191 |
+
label="Example Prompts (click to use)"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
def base_model_predict(user_message, chat_history):
|
| 195 |
+
if model_base is None: # Add this check
|
| 196 |
+
chat_history.append((user_message, f"Base model ({BASE_MODEL_ID}) is not available."))
|
| 197 |
+
yield chat_history
|
| 198 |
+
return
|
| 199 |
+
|
| 200 |
+
chat_history.append((user_message, ""))
|
| 201 |
+
for response_chunk in respond_base(user_message, chat_history[:-1]):
|
| 202 |
+
chat_history[-1] = (user_message, response_chunk)
|
| 203 |
+
yield chat_history
|
| 204 |
+
|
| 205 |
+
def ft_model_predict(user_message, chat_history):
|
| 206 |
+
if model_ft is None: # Add this check
|
| 207 |
+
chat_history.append((user_message, f"Fine-tuned model ({FINETUNED_MODEL_ID}) is not available."))
|
| 208 |
+
yield chat_history
|
| 209 |
+
return
|
| 210 |
+
|
| 211 |
+
chat_history.append((user_message, ""))
|
| 212 |
+
for response_chunk in respond_finetuned(user_message, chat_history[:-1]):
|
| 213 |
+
chat_history[-1] = (user_message, response_chunk)
|
| 214 |
+
yield chat_history
|
| 215 |
+
|
| 216 |
+
# Event handlers
|
| 217 |
+
actions = []
|
| 218 |
+
if model_base is not None:
|
| 219 |
+
actions.append(
|
| 220 |
+
shared_input_textbox.submit(
|
| 221 |
+
base_model_predict,
|
| 222 |
+
[shared_input_textbox, chatbot_base],
|
| 223 |
+
[chatbot_base],
|
| 224 |
+
queue=True
|
| 225 |
+
)
|
| 226 |
+
)
|
| 227 |
+
actions.append(
|
| 228 |
+
submit_button.click(
|
| 229 |
+
base_model_predict,
|
| 230 |
+
[shared_input_textbox, chatbot_base],
|
| 231 |
+
[chatbot_base],
|
| 232 |
+
queue=True
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
if model_ft is not None:
|
| 237 |
+
actions.append(
|
| 238 |
+
shared_input_textbox.submit(
|
| 239 |
+
ft_model_predict,
|
| 240 |
+
[shared_input_textbox, chatbot_ft],
|
| 241 |
+
[chatbot_ft],
|
| 242 |
+
queue=True
|
| 243 |
+
)
|
| 244 |
+
)
|
| 245 |
+
actions.append(
|
| 246 |
+
submit_button.click(
|
| 247 |
+
ft_model_predict,
|
| 248 |
+
[shared_input_textbox, chatbot_ft],
|
| 249 |
+
[chatbot_ft],
|
| 250 |
+
queue=True
|
| 251 |
+
)
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Clear textbox after all submits are queued. This is slightly simplified.
|
| 255 |
+
# For a more robust clear, you might need to chain these events or use gr.Group.
|
| 256 |
+
def clear_textbox_fn():
|
| 257 |
+
return ""
|
| 258 |
+
|
| 259 |
+
if actions: # If any model is active
|
| 260 |
+
shared_input_textbox.submit(clear_textbox_fn, [], [shared_input_textbox])
|
| 261 |
+
submit_button.click(clear_textbox_fn, [], [shared_input_textbox])
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# --- Launch the App ---
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
demo.queue()
|
| 267 |
+
demo.launch(debug=True) # share=True for public link if running locally
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.7.1+cu118
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|
| 4 |
+
accelerate
|
| 5 |
+
datasets
|
| 6 |
+
peft
|
| 7 |
+
trl
|
| 8 |
+
scikit-learn
|
| 9 |
+
einops
|
| 10 |
+
sentencepiece
|