Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +267 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
|
7 |
+
# --- Configuration ---
|
8 |
+
BASE_MODEL_ID = "Qwen/Qwen2.5-7B-Instruct"
|
9 |
+
# NOW, this points to your model on the Hugging Face Hub
|
10 |
+
FINETUNED_MODEL_ID = "serhany/cineguide-qwen2.5-7b-instruct-ft"
|
11 |
+
|
12 |
+
# System prompts (same as before)
|
13 |
+
SYSTEM_PROMPT_CINEGUIDE = """You are CineGuide, a knowledgeable and friendly movie recommendation assistant. Your goal is to:
|
14 |
+
1. Provide personalized movie recommendations based on user preferences
|
15 |
+
2. Give brief, compelling rationales for why you recommend each movie
|
16 |
+
3. Ask thoughtful follow-up questions to better understand user tastes
|
17 |
+
4. Maintain an enthusiastic but not overwhelming tone about cinema
|
18 |
+
|
19 |
+
When recommending movies, always explain WHY the movie fits their preferences."""
|
20 |
+
SYSTEM_PROMPT_BASE = "You are a helpful AI assistant."
|
21 |
+
|
22 |
+
# --- Model Loading ---
|
23 |
+
_models_cache = {}
|
24 |
+
|
25 |
+
def get_model_and_tokenizer(model_id_or_path, is_local_path=False): # Added is_local_path for flexibility
|
26 |
+
if model_id_or_path in _models_cache:
|
27 |
+
return _models_cache[model_id_or_path]
|
28 |
+
|
29 |
+
print(f"Loading model: {model_id_or_path}")
|
30 |
+
# For models from Hub, trust_remote_code is often needed for custom architectures like Qwen
|
31 |
+
# For local paths, it might also be needed if they were saved with trust_remote_code=True
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id_or_path, trust_remote_code=True)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id_or_path,
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map="auto",
|
37 |
+
trust_remote_code=True,
|
38 |
+
# attn_implementation="flash_attention_2" # Optional
|
39 |
+
)
|
40 |
+
model.eval()
|
41 |
+
|
42 |
+
if tokenizer.pad_token is None:
|
43 |
+
tokenizer.pad_token = tokenizer.eos_token
|
44 |
+
# Ensure pad_token_id is also set if pad_token is set
|
45 |
+
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
46 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
47 |
+
|
48 |
+
|
49 |
+
_models_cache[model_id_or_path] = (model, tokenizer)
|
50 |
+
print(f"Finished loading: {model_id_or_path}")
|
51 |
+
return model, tokenizer
|
52 |
+
|
53 |
+
print("Pre-loading models...")
|
54 |
+
model_base, tokenizer_base = None, None
|
55 |
+
model_ft, tokenizer_ft = None, None
|
56 |
+
|
57 |
+
try:
|
58 |
+
model_base, tokenizer_base = get_model_and_tokenizer(BASE_MODEL_ID)
|
59 |
+
print("Base model loaded.")
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error loading base model ({BASE_MODEL_ID}): {e}")
|
62 |
+
|
63 |
+
try:
|
64 |
+
model_ft, tokenizer_ft = get_model_and_tokenizer(FINETUNED_MODEL_ID)
|
65 |
+
print("Fine-tuned model loaded.")
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error loading fine-tuned model ({FINETUNED_MODEL_ID}): {e}")
|
68 |
+
|
69 |
+
print("Model pre-loading complete.")
|
70 |
+
|
71 |
+
# --- Inference Function (generate_chat_response) ---
|
72 |
+
# This function remains largely the same as in the previous app.py.
|
73 |
+
# Make sure it uses `model_base, tokenizer_base` and `model_ft, tokenizer_ft` correctly.
|
74 |
+
def generate_chat_response(message: str, chat_history: list, model_type: str):
|
75 |
+
# ... (Keep the exact same generate_chat_response function from the previous app.py)
|
76 |
+
if model_type == "base":
|
77 |
+
if model_base is None or tokenizer_base is None:
|
78 |
+
yield f"Base model ({BASE_MODEL_ID}) is not available."
|
79 |
+
return
|
80 |
+
model, tokenizer = model_base, tokenizer_base
|
81 |
+
system_prompt = SYSTEM_PROMPT_BASE
|
82 |
+
elif model_type == "finetuned":
|
83 |
+
if model_ft is None or tokenizer_ft is None:
|
84 |
+
yield f"Fine-tuned model ({FINETUNED_MODEL_ID}) is not available."
|
85 |
+
return
|
86 |
+
model, tokenizer = model_ft, tokenizer_ft
|
87 |
+
system_prompt = SYSTEM_PROMPT_CINEGUIDE
|
88 |
+
else:
|
89 |
+
yield "Invalid model type."
|
90 |
+
return
|
91 |
+
|
92 |
+
conversation = []
|
93 |
+
if system_prompt:
|
94 |
+
conversation.append({"role": "system", "content": system_prompt})
|
95 |
+
|
96 |
+
for user_msg, assistant_msg in chat_history:
|
97 |
+
if user_msg: # Ensure user_msg is not None
|
98 |
+
conversation.append({"role": "user", "content": user_msg})
|
99 |
+
if assistant_msg: # Ensure assistant_msg is not None
|
100 |
+
conversation.append({"role": "assistant", "content": assistant_msg})
|
101 |
+
conversation.append({"role": "user", "content": message})
|
102 |
+
|
103 |
+
prompt = tokenizer.apply_chat_template(
|
104 |
+
conversation,
|
105 |
+
tokenize=False,
|
106 |
+
add_generation_prompt=True
|
107 |
+
)
|
108 |
+
|
109 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
|
110 |
+
|
111 |
+
full_response = ""
|
112 |
+
# Make sure eos_token_id is a list if multiple EOS tokens are possible
|
113 |
+
eos_tokens_ids = [tokenizer.eos_token_id]
|
114 |
+
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
115 |
+
if im_end_id != tokenizer.unk_token_id: # Check if <|im_end|> is in vocab
|
116 |
+
eos_tokens_ids.append(im_end_id)
|
117 |
+
|
118 |
+
|
119 |
+
generated_token_ids = model.generate(
|
120 |
+
**inputs,
|
121 |
+
max_new_tokens=512,
|
122 |
+
do_sample=True,
|
123 |
+
temperature=0.7,
|
124 |
+
top_p=0.9,
|
125 |
+
repetition_penalty=1.1,
|
126 |
+
pad_token_id=tokenizer.pad_token_id, # Use pad_token_id
|
127 |
+
eos_token_id=eos_tokens_ids
|
128 |
+
)
|
129 |
+
|
130 |
+
new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
|
131 |
+
response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
132 |
+
response_text = response_text.replace("<|im_end|>", "").strip()
|
133 |
+
|
134 |
+
for char in response_text:
|
135 |
+
full_response += char
|
136 |
+
time.sleep(0.005)
|
137 |
+
yield full_response
|
138 |
+
|
139 |
+
def respond_base(message, chat_history):
|
140 |
+
yield from generate_chat_response(message, chat_history, "base")
|
141 |
+
|
142 |
+
def respond_finetuned(message, chat_history):
|
143 |
+
yield from generate_chat_response(message, chat_history, "finetuned")
|
144 |
+
|
145 |
+
|
146 |
+
# --- Gradio UI (with gr.Blocks as demo:) ---
|
147 |
+
# This part remains largely the same as the previous app.py
|
148 |
+
# Ensure the Markdown and labels correctly reference the models being loaded.
|
149 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
150 |
+
gr.Markdown(
|
151 |
+
f"""
|
152 |
+
# 🎬 CineGuide vs. Base {BASE_MODEL_ID}
|
153 |
+
Compare the fine-tuned CineGuide movie recommender (loaded from `{FINETUNED_MODEL_ID}`)
|
154 |
+
with the base {BASE_MODEL_ID} model.
|
155 |
+
Type your movie-related query below and see how each model responds!
|
156 |
+
"""
|
157 |
+
)
|
158 |
+
# ... (Rest of the UI definition: Rows, Columns, Chatbots, Textbox, Button, Examples)
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column(scale=1):
|
161 |
+
gr.Markdown(f"## 🗣️ Base {BASE_MODEL_ID}")
|
162 |
+
chatbot_base = gr.Chatbot(label="Base Model Chat", height=500, bubble_full_width=False)
|
163 |
+
if model_base is None:
|
164 |
+
gr.Markdown(f"⚠️ Base model ({BASE_MODEL_ID}) could not be loaded.")
|
165 |
+
|
166 |
+
with gr.Column(scale=1):
|
167 |
+
gr.Markdown(f"## 🤖 Fine-tuned CineGuide (from {FINETUNED_MODEL_ID})")
|
168 |
+
chatbot_ft = gr.Chatbot(label="CineGuide Chat", height=500, bubble_full_width=False)
|
169 |
+
if model_ft is None:
|
170 |
+
gr.Markdown(f"⚠️ Fine-tuned model ({FINETUNED_MODEL_ID}) could not be loaded.")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
shared_input_textbox = gr.Textbox(
|
174 |
+
show_label=False,
|
175 |
+
placeholder="Enter your movie query here and press Enter...",
|
176 |
+
container=False,
|
177 |
+
scale=7,
|
178 |
+
)
|
179 |
+
submit_button = gr.Button("✉️ Send", variant="primary", scale=1)
|
180 |
+
|
181 |
+
gr.Examples(
|
182 |
+
examples=[
|
183 |
+
"Hi! I'm looking for something funny to watch tonight.",
|
184 |
+
"I love dry, witty humor more than slapstick. Think more British comedy style.",
|
185 |
+
"I'm really into complex sci-fi movies that make you think. I loved Arrival and Blade Runner 2049.",
|
186 |
+
"I need help planning a family movie night. We have kids aged 8, 11, and 14, plus adults.",
|
187 |
+
"I'm going through a tough breakup and need something uplifting but not cheesy romantic.",
|
188 |
+
"I loved Parasite and want to explore more international cinema. Where should I start?",
|
189 |
+
],
|
190 |
+
inputs=[shared_input_textbox],
|
191 |
+
label="Example Prompts (click to use)"
|
192 |
+
)
|
193 |
+
|
194 |
+
def base_model_predict(user_message, chat_history):
|
195 |
+
if model_base is None: # Add this check
|
196 |
+
chat_history.append((user_message, f"Base model ({BASE_MODEL_ID}) is not available."))
|
197 |
+
yield chat_history
|
198 |
+
return
|
199 |
+
|
200 |
+
chat_history.append((user_message, ""))
|
201 |
+
for response_chunk in respond_base(user_message, chat_history[:-1]):
|
202 |
+
chat_history[-1] = (user_message, response_chunk)
|
203 |
+
yield chat_history
|
204 |
+
|
205 |
+
def ft_model_predict(user_message, chat_history):
|
206 |
+
if model_ft is None: # Add this check
|
207 |
+
chat_history.append((user_message, f"Fine-tuned model ({FINETUNED_MODEL_ID}) is not available."))
|
208 |
+
yield chat_history
|
209 |
+
return
|
210 |
+
|
211 |
+
chat_history.append((user_message, ""))
|
212 |
+
for response_chunk in respond_finetuned(user_message, chat_history[:-1]):
|
213 |
+
chat_history[-1] = (user_message, response_chunk)
|
214 |
+
yield chat_history
|
215 |
+
|
216 |
+
# Event handlers
|
217 |
+
actions = []
|
218 |
+
if model_base is not None:
|
219 |
+
actions.append(
|
220 |
+
shared_input_textbox.submit(
|
221 |
+
base_model_predict,
|
222 |
+
[shared_input_textbox, chatbot_base],
|
223 |
+
[chatbot_base],
|
224 |
+
queue=True
|
225 |
+
)
|
226 |
+
)
|
227 |
+
actions.append(
|
228 |
+
submit_button.click(
|
229 |
+
base_model_predict,
|
230 |
+
[shared_input_textbox, chatbot_base],
|
231 |
+
[chatbot_base],
|
232 |
+
queue=True
|
233 |
+
)
|
234 |
+
)
|
235 |
+
|
236 |
+
if model_ft is not None:
|
237 |
+
actions.append(
|
238 |
+
shared_input_textbox.submit(
|
239 |
+
ft_model_predict,
|
240 |
+
[shared_input_textbox, chatbot_ft],
|
241 |
+
[chatbot_ft],
|
242 |
+
queue=True
|
243 |
+
)
|
244 |
+
)
|
245 |
+
actions.append(
|
246 |
+
submit_button.click(
|
247 |
+
ft_model_predict,
|
248 |
+
[shared_input_textbox, chatbot_ft],
|
249 |
+
[chatbot_ft],
|
250 |
+
queue=True
|
251 |
+
)
|
252 |
+
)
|
253 |
+
|
254 |
+
# Clear textbox after all submits are queued. This is slightly simplified.
|
255 |
+
# For a more robust clear, you might need to chain these events or use gr.Group.
|
256 |
+
def clear_textbox_fn():
|
257 |
+
return ""
|
258 |
+
|
259 |
+
if actions: # If any model is active
|
260 |
+
shared_input_textbox.submit(clear_textbox_fn, [], [shared_input_textbox])
|
261 |
+
submit_button.click(clear_textbox_fn, [], [shared_input_textbox])
|
262 |
+
|
263 |
+
|
264 |
+
# --- Launch the App ---
|
265 |
+
if __name__ == "__main__":
|
266 |
+
demo.queue()
|
267 |
+
demo.launch(debug=True) # share=True for public link if running locally
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.7.1+cu118
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
accelerate
|
5 |
+
datasets
|
6 |
+
peft
|
7 |
+
trl
|
8 |
+
scikit-learn
|
9 |
+
einops
|
10 |
+
sentencepiece
|