Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import Idefics3ForConditionalGeneration, AutoProcessor | |
| import torch | |
| from PIL import Image | |
| from datetime import datetime | |
| import numpy as np | |
| import os | |
| DESCRIPTION = """ | |
| # SmolVLM-trl-sft-ChartQA Demo | |
| This is a demo Space for a fine-tuned version of [SmolVLM](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) trained using [ChatQA dataset](https://huggingface.co/datasets/HuggingFaceM4/ChartQA). | |
| The corresponding model is located [here](https://huggingface.co/sergiopaniego/smolvlm-instruct-trl-sft-ChartQA). | |
| """ | |
| model_id = "HuggingFaceTB/SmolVLM-Instruct" | |
| model = Idefics3ForConditionalGeneration.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| #_attn_implementation="flash_attention_2", | |
| ) | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| adapter_path = "sergiopaniego/smolvlm-instruct-trl-sft-ChartQA" | |
| model.load_adapter(adapter_path) | |
| def array_to_image_path(image_array): | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| # Convert numpy array to PIL Image | |
| img = Image.fromarray(np.uint8(image_array)) | |
| # Generate a unique filename using timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| # Save the image | |
| img.save(filename) | |
| # Get the full path of the saved image | |
| full_path = os.path.abspath(filename) | |
| return full_path | |
| def run_example(image, text_input=None): | |
| image_path = array_to_image_path(image) | |
| image = Image.fromarray(image).convert("RGB") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "text": None, | |
| }, | |
| { | |
| "text": text_input, | |
| "type": "text" | |
| }, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs = [] | |
| if image.mode != 'RGB': | |
| image = image.convert('RGB') | |
| image_inputs.append([image]) | |
| inputs = processor( | |
| text=text, | |
| images=image_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab(label="SmolVLM-trl-sft-ChartQA Input"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| text_input = gr.Textbox(label="Question") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| submit_btn.click(run_example, [input_img, text_input], [output_text]) | |
| demo.queue(api_open=False) | |
| demo.launch(debug=True) |