Spaces:
Sleeping
Sleeping
Duplicate from katanaml-org/sparrow-ml
Browse filesCo-authored-by: Andrej Baranovskij <[email protected]>
- .gitattributes +34 -0
- .gitignore +2 -0
- Dockerfile +20 -0
- README.md +12 -0
- __init__.py +0 -0
- config.py +19 -0
- data/donut_evaluate_stats.json +1 -0
- data/donut_inference_stats.json +1 -0
- data/donut_training_stats.json +1 -0
- endpoints.py +25 -0
- requirements-fastapi.txt +10 -0
- routers/__init__.py +0 -0
- routers/donut_evaluate.py +90 -0
- routers/donut_inference.py +60 -0
- routers/donut_training.py +393 -0
- routers/inference.py +81 -0
- routers/training.py +87 -0
- utils.py +29 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.DS_Store
|
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.7-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY requirements-fastapi.txt ./
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements-fastapi.txt
|
| 8 |
+
|
| 9 |
+
RUN useradd -m -u 1000 user
|
| 10 |
+
|
| 11 |
+
USER user
|
| 12 |
+
|
| 13 |
+
ENV HOME=/home/user \
|
| 14 |
+
PATH=/home/user/.local/bin:$PATH
|
| 15 |
+
|
| 16 |
+
WORKDIR $HOME/app
|
| 17 |
+
|
| 18 |
+
COPY --chown=user . $HOME/app/
|
| 19 |
+
|
| 20 |
+
CMD ["uvicorn", "endpoints:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Sparrow ML
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
license: mit
|
| 9 |
+
duplicated_from: katanaml-org/sparrow-ml
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__init__.py
ADDED
|
File without changes
|
config.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseSettings
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Settings(BaseSettings):
|
| 6 |
+
huggingface_key: str = os.environ.get("huggingface_key")
|
| 7 |
+
sparrow_key: str = os.environ.get("sparrow_key")
|
| 8 |
+
processor: str = "katanaml-org/invoices-donut-model-v1"
|
| 9 |
+
model: str = "katanaml-org/invoices-donut-model-v1"
|
| 10 |
+
dataset: str = "katanaml-org/invoices-donut-data-v1"
|
| 11 |
+
base_config: str = "naver-clova-ix/donut-base"
|
| 12 |
+
base_processor: str = "naver-clova-ix/donut-base"
|
| 13 |
+
base_model: str = "naver-clova-ix/donut-base"
|
| 14 |
+
inference_stats_file: str = "data/donut_inference_stats.json"
|
| 15 |
+
training_stats_file: str = "data/donut_training_stats.json"
|
| 16 |
+
evaluate_stats_file: str = "data/donut_evaluate_stats.json"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
settings = Settings()
|
data/donut_evaluate_stats.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[498.8315510749817, {"accuracies": [0.9903846153846154, 0.6744186046511628, 0.9920948616600791, 0.981675392670157, 0.9728555917480999, 0.9886363636363636, 0.9846796657381616, 0.9858156028368794, 0.996031746031746, 0.9768115942028985, 0.9777227722772277, 0.9886363636363636, 0.9955555555555555, 0.9894847528916929, 0.9964028776978417, 0.9970238095238095, 0.975609756097561, 0.9941176470588236, 0.9921259842519685, 0.9533898305084746, 0.8410174880763116, 0.9781609195402299, 0.8535825545171339, 0.9862595419847329, 0.9906868451688009, 0.9929478138222849], "mean_accuracy": 0.9633126365834221}, 0.9633126365834221, "katanaml-org/invoices-donut-model-v1", "2023-05-15 16:16:59"], [480.58880615234375, {"accuracies": [0.9903846153846154, 0.6744186046511628, 0.9920948616600791, 0.981675392670157, 0.9728555917480999, 0.9886363636363636, 0.9846796657381616, 0.9858156028368794, 0.996031746031746, 0.9768115942028985, 0.9777227722772277, 0.9886363636363636, 0.9955555555555555, 0.9894847528916929, 0.9964028776978417, 0.9970238095238095, 0.975609756097561, 0.9941176470588236, 0.9921259842519685, 0.9533898305084746, 0.8410174880763116, 0.9781609195402299, 0.8535825545171339, 0.9862595419847329, 0.9906868451688009, 0.9929478138222849], "mean_accuracy": 0.9633126365834221}, 0.9633126365834221, "katanaml-org/invoices-donut-model-v1", "2023-05-15 16:29:24"], [496.27668499946594, {"accuracies": [0.9903846153846154, 0.6744186046511628, 0.9920948616600791, 0.981675392670157, 0.9728555917480999, 0.9886363636363636, 0.9846796657381616, 0.9858156028368794, 0.996031746031746, 0.9768115942028985, 0.9777227722772277, 0.9886363636363636, 0.9955555555555555, 0.9894847528916929, 0.9964028776978417, 0.9970238095238095, 0.975609756097561, 0.9941176470588236, 0.9921259842519685, 0.9533898305084746, 0.8410174880763116, 0.9781609195402299, 0.8535825545171339, 0.9862595419847329, 0.9906868451688009, 0.9929478138222849], "mean_accuracy": 0.9633126365834221}, 0.9633126365834221, "katanaml-org/invoices-donut-model-v1", "2023-05-17 11:26:54"], [496.5165719985962, {"accuracies": [0.9903846153846154, 0.6744186046511628, 0.9920948616600791, 0.981675392670157, 0.9728555917480999, 0.9886363636363636, 0.9846796657381616, 0.9858156028368794, 0.996031746031746, 0.9768115942028985, 0.9777227722772277, 0.9886363636363636, 0.9955555555555555, 0.9894847528916929, 0.9964028776978417, 0.9970238095238095, 0.975609756097561, 0.9941176470588236, 0.9921259842519685, 0.9533898305084746, 0.8410174880763116, 0.9781609195402299, 0.8535825545171339, 0.9862595419847329, 0.9906868451688009, 0.9929478138222849], "mean_accuracy": 0.9633126365834221}, 0.9633126365834221, "katanaml-org/invoices-donut-model-v1", "2023-05-17 11:40:15"], [528.6264460086823, {"accuracies": [0.9903846153846154, 0.6744186046511628, 0.9920948616600791, 0.981675392670157, 0.9728555917480999, 0.9886363636363636, 0.9846796657381616, 0.9858156028368794, 0.996031746031746, 0.9768115942028985, 0.9777227722772277, 0.9886363636363636, 0.9955555555555555, 0.9894847528916929, 0.9964028776978417, 0.9970238095238095, 0.975609756097561, 0.9941176470588236, 0.9921259842519685, 0.9533898305084746, 0.8410174880763116, 0.9781609195402299, 0.8535825545171339, 0.9862595419847329, 0.9906868451688009, 0.9929478138222849], "mean_accuracy": 0.9633126365834221}, 0.9633126365834221, "katanaml-org/invoices-donut-model-v1", "2023-05-17 22:22:59"]]
|
data/donut_inference_stats.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[14.571558952331543, 21, "invoice_10.jpg", "katanaml-org/invoices-donut-model-v1", "2023-04-13 21:45:30"], [14.510485887527466, 16, "docs/inference/invoice_0_16823599391530209.jpg", "katanaml-org/invoices-donut-model-v1", "2023-04-24 21:12:37"]]
|
data/donut_training_stats.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[112.83321595191956, "katanaml-org/invoices-donut-model-v1", "2023-05-17 22:05:20"], [47.31714415550232, "katanaml-org/invoices-donut-model-v1", "2023-05-17 22:06:31"]]
|
endpoints.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from routers import inference, training
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
+
from config import settings
|
| 6 |
+
|
| 7 |
+
login(settings.huggingface_key)
|
| 8 |
+
|
| 9 |
+
app = FastAPI(openapi_url="/api/v1/sparrow-ml/openapi.json", docs_url="/api/v1/sparrow-ml/docs")
|
| 10 |
+
|
| 11 |
+
app.add_middleware(
|
| 12 |
+
CORSMiddleware,
|
| 13 |
+
allow_origins=["*"],
|
| 14 |
+
allow_methods=["*"],
|
| 15 |
+
allow_headers=["*"],
|
| 16 |
+
allow_credentials=True,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
app.include_router(inference.router, prefix="/api-inference/v1/sparrow-ml", tags=["Inference"])
|
| 20 |
+
app.include_router(training.router, prefix="/api-training/v1/sparrow-ml", tags=["Training"])
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@app.get("/")
|
| 24 |
+
async def root():
|
| 25 |
+
return {"message": "Sparrow ML API"}
|
requirements-fastapi.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
datasets
|
| 3 |
+
sentencepiece
|
| 4 |
+
tensorboard
|
| 5 |
+
pytorch-lightning
|
| 6 |
+
Pillow
|
| 7 |
+
donut-python
|
| 8 |
+
fastapi==0.95.2
|
| 9 |
+
uvicorn[standard]
|
| 10 |
+
python-multipart
|
routers/__init__.py
ADDED
|
File without changes
|
routers/donut_evaluate.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 2 |
+
import locale
|
| 3 |
+
|
| 4 |
+
import re
|
| 5 |
+
import json
|
| 6 |
+
import torch
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
import numpy as np
|
| 9 |
+
from donut import JSONParseEvaluator
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
from functools import lru_cache
|
| 12 |
+
import os
|
| 13 |
+
import time
|
| 14 |
+
from config import settings
|
| 15 |
+
|
| 16 |
+
locale.getpreferredencoding = lambda: "UTF-8"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@lru_cache(maxsize=1)
|
| 20 |
+
def prepare_model():
|
| 21 |
+
processor = DonutProcessor.from_pretrained(settings.processor)
|
| 22 |
+
model = VisionEncoderDecoderModel.from_pretrained(settings.model)
|
| 23 |
+
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
|
| 26 |
+
model.eval()
|
| 27 |
+
model.to(device)
|
| 28 |
+
|
| 29 |
+
dataset = load_dataset(settings.dataset, split="test")
|
| 30 |
+
|
| 31 |
+
return processor, model, device, dataset
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def run_evaluate_donut():
|
| 35 |
+
worker_pid = os.getpid()
|
| 36 |
+
print(f"Handling evaluation request with worker PID: {worker_pid}")
|
| 37 |
+
|
| 38 |
+
start_time = time.time()
|
| 39 |
+
|
| 40 |
+
output_list = []
|
| 41 |
+
accs = []
|
| 42 |
+
|
| 43 |
+
processor, model, device, dataset = prepare_model()
|
| 44 |
+
|
| 45 |
+
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
| 46 |
+
# prepare encoder inputs
|
| 47 |
+
pixel_values = processor(sample["image"].convert("RGB"), return_tensors="pt").pixel_values
|
| 48 |
+
pixel_values = pixel_values.to(device)
|
| 49 |
+
# prepare decoder inputs
|
| 50 |
+
task_prompt = "<s_cord-v2>"
|
| 51 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 52 |
+
decoder_input_ids = decoder_input_ids.to(device)
|
| 53 |
+
|
| 54 |
+
# autoregressively generate sequence
|
| 55 |
+
outputs = model.generate(
|
| 56 |
+
pixel_values,
|
| 57 |
+
decoder_input_ids=decoder_input_ids,
|
| 58 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 59 |
+
early_stopping=True,
|
| 60 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 61 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 62 |
+
use_cache=True,
|
| 63 |
+
num_beams=1,
|
| 64 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 65 |
+
return_dict_in_generate=True,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# turn into JSON
|
| 69 |
+
seq = processor.batch_decode(outputs.sequences)[0]
|
| 70 |
+
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 71 |
+
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
| 72 |
+
seq = processor.token2json(seq)
|
| 73 |
+
|
| 74 |
+
ground_truth = json.loads(sample["ground_truth"])
|
| 75 |
+
ground_truth = ground_truth["gt_parse"]
|
| 76 |
+
evaluator = JSONParseEvaluator()
|
| 77 |
+
score = evaluator.cal_acc(seq, ground_truth)
|
| 78 |
+
|
| 79 |
+
accs.append(score)
|
| 80 |
+
output_list.append(seq)
|
| 81 |
+
|
| 82 |
+
end_time = time.time()
|
| 83 |
+
processing_time = end_time - start_time
|
| 84 |
+
|
| 85 |
+
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
| 86 |
+
print(scores, f"length : {len(accs)}")
|
| 87 |
+
print("Mean accuracy:", np.mean(accs))
|
| 88 |
+
print(f"Evaluation done, worker PID: {worker_pid}")
|
| 89 |
+
|
| 90 |
+
return scores, np.mean(accs), processing_time
|
routers/donut_inference.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import time
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 5 |
+
from config import settings
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@lru_cache(maxsize=1)
|
| 11 |
+
def load_model():
|
| 12 |
+
processor = DonutProcessor.from_pretrained(settings.processor)
|
| 13 |
+
model = VisionEncoderDecoderModel.from_pretrained(settings.model)
|
| 14 |
+
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
model.to(device)
|
| 17 |
+
|
| 18 |
+
return processor, model, device
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process_document_donut(image):
|
| 22 |
+
worker_pid = os.getpid()
|
| 23 |
+
print(f"Handling inference request with worker PID: {worker_pid}")
|
| 24 |
+
|
| 25 |
+
start_time = time.time()
|
| 26 |
+
|
| 27 |
+
processor, model, device = load_model()
|
| 28 |
+
|
| 29 |
+
# prepare encoder inputs
|
| 30 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 31 |
+
|
| 32 |
+
# prepare decoder inputs
|
| 33 |
+
task_prompt = "<s_cord-v2>"
|
| 34 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 35 |
+
|
| 36 |
+
# generate answer
|
| 37 |
+
outputs = model.generate(
|
| 38 |
+
pixel_values.to(device),
|
| 39 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 40 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 41 |
+
early_stopping=True,
|
| 42 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 43 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 44 |
+
use_cache=True,
|
| 45 |
+
num_beams=1,
|
| 46 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 47 |
+
return_dict_in_generate=True,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# postprocess
|
| 51 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 52 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 53 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 54 |
+
|
| 55 |
+
end_time = time.time()
|
| 56 |
+
processing_time = end_time - start_time
|
| 57 |
+
|
| 58 |
+
print(f"Inference done, worker PID: {worker_pid}")
|
| 59 |
+
|
| 60 |
+
return processor.token2json(sequence), processing_time
|
routers/donut_training.py
ADDED
|
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !pip install -q git+https://github.com/huggingface/transformers.git datasets sentencepiece
|
| 2 |
+
# !pip install -q pytorch-lightning==1.9.5 wandb
|
| 3 |
+
|
| 4 |
+
from config import settings
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from transformers import VisionEncoderDecoderConfig
|
| 7 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 8 |
+
|
| 9 |
+
import json
|
| 10 |
+
import random
|
| 11 |
+
from typing import Any, List, Tuple
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
from torch.utils.data import Dataset
|
| 15 |
+
|
| 16 |
+
from torch.utils.data import DataLoader
|
| 17 |
+
|
| 18 |
+
import re
|
| 19 |
+
from nltk import edit_distance
|
| 20 |
+
import numpy as np
|
| 21 |
+
import os
|
| 22 |
+
import time
|
| 23 |
+
|
| 24 |
+
import pytorch_lightning as pl
|
| 25 |
+
from functools import lru_cache
|
| 26 |
+
|
| 27 |
+
from pytorch_lightning.loggers import WandbLogger
|
| 28 |
+
from pytorch_lightning.callbacks import Callback
|
| 29 |
+
from config import settings
|
| 30 |
+
|
| 31 |
+
added_tokens = []
|
| 32 |
+
|
| 33 |
+
dataset_name = settings.dataset
|
| 34 |
+
base_config_name = settings.base_config
|
| 35 |
+
base_processor_name = settings.base_processor
|
| 36 |
+
base_model_name = settings.base_model
|
| 37 |
+
model_name = settings.model
|
| 38 |
+
|
| 39 |
+
@lru_cache(maxsize=1)
|
| 40 |
+
def prepare_job():
|
| 41 |
+
print("Preparing job...")
|
| 42 |
+
|
| 43 |
+
dataset = load_dataset(dataset_name)
|
| 44 |
+
|
| 45 |
+
max_length = 768
|
| 46 |
+
image_size = [1280, 960]
|
| 47 |
+
|
| 48 |
+
# update image_size of the encoder
|
| 49 |
+
# during pre-training, a larger image size was used
|
| 50 |
+
config = VisionEncoderDecoderConfig.from_pretrained(base_config_name)
|
| 51 |
+
config.encoder.image_size = image_size # (height, width)
|
| 52 |
+
# update max_length of the decoder (for generation)
|
| 53 |
+
config.decoder.max_length = max_length
|
| 54 |
+
# TODO we should actually update max_position_embeddings and interpolate the pre-trained ones:
|
| 55 |
+
# https://github.com/clovaai/donut/blob/0acc65a85d140852b8d9928565f0f6b2d98dc088/donut/model.py#L602
|
| 56 |
+
|
| 57 |
+
processor = DonutProcessor.from_pretrained(base_processor_name)
|
| 58 |
+
model = VisionEncoderDecoderModel.from_pretrained(base_model_name, config=config)
|
| 59 |
+
|
| 60 |
+
return model, processor, dataset, config, image_size, max_length
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class DonutDataset(Dataset):
|
| 64 |
+
"""
|
| 65 |
+
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
|
| 66 |
+
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
|
| 67 |
+
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
|
| 68 |
+
Args:
|
| 69 |
+
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
|
| 70 |
+
max_length: the max number of tokens for the target sequences
|
| 71 |
+
split: whether to load "train", "validation" or "test" split
|
| 72 |
+
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
|
| 73 |
+
task_start_token: the special token to be fed to the decoder to conduct the target task
|
| 74 |
+
prompt_end_token: the special token at the end of the sequences
|
| 75 |
+
sort_json_key: whether or not to sort the JSON keys
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
dataset_name_or_path: str,
|
| 81 |
+
max_length: int,
|
| 82 |
+
split: str = "train",
|
| 83 |
+
ignore_id: int = -100,
|
| 84 |
+
task_start_token: str = "<s>",
|
| 85 |
+
prompt_end_token: str = None,
|
| 86 |
+
sort_json_key: bool = True,
|
| 87 |
+
):
|
| 88 |
+
super().__init__()
|
| 89 |
+
|
| 90 |
+
model, processor, dataset, config, image_size, p1 = prepare_job()
|
| 91 |
+
|
| 92 |
+
self.max_length = max_length
|
| 93 |
+
self.split = split
|
| 94 |
+
self.ignore_id = ignore_id
|
| 95 |
+
self.task_start_token = task_start_token
|
| 96 |
+
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
|
| 97 |
+
self.sort_json_key = sort_json_key
|
| 98 |
+
|
| 99 |
+
self.dataset = load_dataset(dataset_name_or_path, split=self.split)
|
| 100 |
+
self.dataset_length = len(self.dataset)
|
| 101 |
+
|
| 102 |
+
self.gt_token_sequences = []
|
| 103 |
+
for sample in self.dataset:
|
| 104 |
+
ground_truth = json.loads(sample["ground_truth"])
|
| 105 |
+
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
|
| 106 |
+
assert isinstance(ground_truth["gt_parses"], list)
|
| 107 |
+
gt_jsons = ground_truth["gt_parses"]
|
| 108 |
+
else:
|
| 109 |
+
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
|
| 110 |
+
gt_jsons = [ground_truth["gt_parse"]]
|
| 111 |
+
|
| 112 |
+
self.gt_token_sequences.append(
|
| 113 |
+
[
|
| 114 |
+
self.json2token(
|
| 115 |
+
gt_json,
|
| 116 |
+
update_special_tokens_for_json_key=self.split == "train",
|
| 117 |
+
sort_json_key=self.sort_json_key,
|
| 118 |
+
)
|
| 119 |
+
+ processor.tokenizer.eos_token
|
| 120 |
+
for gt_json in gt_jsons # load json from list of json
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
self.add_tokens([self.task_start_token, self.prompt_end_token])
|
| 125 |
+
self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
|
| 126 |
+
|
| 127 |
+
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
|
| 128 |
+
"""
|
| 129 |
+
Convert an ordered JSON object into a token sequence
|
| 130 |
+
"""
|
| 131 |
+
if type(obj) == dict:
|
| 132 |
+
if len(obj) == 1 and "text_sequence" in obj:
|
| 133 |
+
return obj["text_sequence"]
|
| 134 |
+
else:
|
| 135 |
+
output = ""
|
| 136 |
+
if sort_json_key:
|
| 137 |
+
keys = sorted(obj.keys(), reverse=True)
|
| 138 |
+
else:
|
| 139 |
+
keys = obj.keys()
|
| 140 |
+
for k in keys:
|
| 141 |
+
if update_special_tokens_for_json_key:
|
| 142 |
+
self.add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
|
| 143 |
+
output += (
|
| 144 |
+
fr"<s_{k}>"
|
| 145 |
+
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
|
| 146 |
+
+ fr"</s_{k}>"
|
| 147 |
+
)
|
| 148 |
+
return output
|
| 149 |
+
elif type(obj) == list:
|
| 150 |
+
return r"<sep/>".join(
|
| 151 |
+
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
obj = str(obj)
|
| 155 |
+
if f"<{obj}/>" in added_tokens:
|
| 156 |
+
obj = f"<{obj}/>" # for categorical special tokens
|
| 157 |
+
return obj
|
| 158 |
+
|
| 159 |
+
def add_tokens(self, list_of_tokens: List[str]):
|
| 160 |
+
"""
|
| 161 |
+
Add special tokens to tokenizer and resize the token embeddings of the decoder
|
| 162 |
+
"""
|
| 163 |
+
model, processor, dataset, config, image_size, p1 = prepare_job()
|
| 164 |
+
|
| 165 |
+
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
|
| 166 |
+
if newly_added_num > 0:
|
| 167 |
+
model.decoder.resize_token_embeddings(len(processor.tokenizer))
|
| 168 |
+
added_tokens.extend(list_of_tokens)
|
| 169 |
+
|
| 170 |
+
def __len__(self) -> int:
|
| 171 |
+
return self.dataset_length
|
| 172 |
+
|
| 173 |
+
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 174 |
+
"""
|
| 175 |
+
Load image from image_path of given dataset_path and convert into input_tensor and labels
|
| 176 |
+
Convert gt data into input_ids (tokenized string)
|
| 177 |
+
Returns:
|
| 178 |
+
input_tensor : preprocessed image
|
| 179 |
+
input_ids : tokenized gt_data
|
| 180 |
+
labels : masked labels (model doesn't need to predict prompt and pad token)
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
model, processor, dataset, config, image_size, p1 = prepare_job()
|
| 184 |
+
|
| 185 |
+
sample = self.dataset[idx]
|
| 186 |
+
|
| 187 |
+
# inputs
|
| 188 |
+
pixel_values = processor(sample["image"], random_padding=self.split == "train",
|
| 189 |
+
return_tensors="pt").pixel_values
|
| 190 |
+
pixel_values = pixel_values.squeeze()
|
| 191 |
+
|
| 192 |
+
# targets
|
| 193 |
+
target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
|
| 194 |
+
input_ids = processor.tokenizer(
|
| 195 |
+
target_sequence,
|
| 196 |
+
add_special_tokens=False,
|
| 197 |
+
max_length=self.max_length,
|
| 198 |
+
padding="max_length",
|
| 199 |
+
truncation=True,
|
| 200 |
+
return_tensors="pt",
|
| 201 |
+
)["input_ids"].squeeze(0)
|
| 202 |
+
|
| 203 |
+
labels = input_ids.clone()
|
| 204 |
+
labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token
|
| 205 |
+
# labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA)
|
| 206 |
+
return pixel_values, labels, target_sequence
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def build_data_loaders():
|
| 210 |
+
print("Building data loaders...")
|
| 211 |
+
|
| 212 |
+
model, processor, dataset, config, image_size, max_length = prepare_job()
|
| 213 |
+
|
| 214 |
+
# we update some settings which differ from pretraining; namely the size of the images + no rotation required
|
| 215 |
+
# source: https://github.com/clovaai/donut/blob/master/config/train_cord.yaml
|
| 216 |
+
processor.feature_extractor.size = image_size[::-1] # should be (width, height)
|
| 217 |
+
processor.feature_extractor.do_align_long_axis = False
|
| 218 |
+
|
| 219 |
+
train_dataset = DonutDataset(dataset_name, max_length=max_length,
|
| 220 |
+
split="train", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
|
| 221 |
+
sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
val_dataset = DonutDataset(dataset_name, max_length=max_length,
|
| 225 |
+
split="validation", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
|
| 226 |
+
sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
| 230 |
+
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
|
| 231 |
+
|
| 232 |
+
# feel free to increase the batch size if you have a lot of memory
|
| 233 |
+
# I'm fine-tuning on Colab and given the large image size, batch size > 1 is not feasible
|
| 234 |
+
# Set num_workers=4
|
| 235 |
+
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4)
|
| 236 |
+
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4)
|
| 237 |
+
|
| 238 |
+
return train_dataloader, val_dataloader, max_length
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
class DonutModelPLModule(pl.LightningModule):
|
| 242 |
+
def __init__(self, config, processor, model):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.config = config
|
| 245 |
+
self.processor = processor
|
| 246 |
+
self.model = model
|
| 247 |
+
|
| 248 |
+
self.train_dataloader, self.val_dataloader, self.max_length = build_data_loaders()
|
| 249 |
+
|
| 250 |
+
def training_step(self, batch, batch_idx):
|
| 251 |
+
pixel_values, labels, _ = batch
|
| 252 |
+
|
| 253 |
+
outputs = self.model(pixel_values, labels=labels)
|
| 254 |
+
loss = outputs.loss
|
| 255 |
+
self.log_dict({"train_loss": loss}, sync_dist=True)
|
| 256 |
+
return loss
|
| 257 |
+
|
| 258 |
+
def validation_step(self, batch, batch_idx, dataset_idx=0):
|
| 259 |
+
pixel_values, labels, answers = batch
|
| 260 |
+
batch_size = pixel_values.shape[0]
|
| 261 |
+
# we feed the prompt to the model
|
| 262 |
+
decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)
|
| 263 |
+
|
| 264 |
+
outputs = self.model.generate(pixel_values,
|
| 265 |
+
decoder_input_ids=decoder_input_ids,
|
| 266 |
+
max_length=self.max_length,
|
| 267 |
+
early_stopping=True,
|
| 268 |
+
pad_token_id=self.processor.tokenizer.pad_token_id,
|
| 269 |
+
eos_token_id=self.processor.tokenizer.eos_token_id,
|
| 270 |
+
use_cache=True,
|
| 271 |
+
num_beams=1,
|
| 272 |
+
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
|
| 273 |
+
return_dict_in_generate=True, )
|
| 274 |
+
|
| 275 |
+
predictions = []
|
| 276 |
+
for seq in self.processor.tokenizer.batch_decode(outputs.sequences):
|
| 277 |
+
seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "")
|
| 278 |
+
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
| 279 |
+
predictions.append(seq)
|
| 280 |
+
|
| 281 |
+
scores = list()
|
| 282 |
+
for pred, answer in zip(predictions, answers):
|
| 283 |
+
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
|
| 284 |
+
# NOT NEEDED ANYMORE
|
| 285 |
+
# answer = re.sub(r"<.*?>", "", answer, count=1)
|
| 286 |
+
answer = answer.replace(self.processor.tokenizer.eos_token, "")
|
| 287 |
+
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
|
| 288 |
+
|
| 289 |
+
if self.config.get("verbose", False) and len(scores) == 1:
|
| 290 |
+
print(f"Prediction: {pred}")
|
| 291 |
+
print(f" Answer: {answer}")
|
| 292 |
+
print(f" Normed ED: {scores[0]}")
|
| 293 |
+
|
| 294 |
+
return scores
|
| 295 |
+
|
| 296 |
+
def validation_epoch_end(self, validation_step_outputs):
|
| 297 |
+
# I set this to 1 manually
|
| 298 |
+
# (previously set to len(self.config.dataset_name_or_paths))
|
| 299 |
+
num_of_loaders = 1
|
| 300 |
+
if num_of_loaders == 1:
|
| 301 |
+
validation_step_outputs = [validation_step_outputs]
|
| 302 |
+
assert len(validation_step_outputs) == num_of_loaders
|
| 303 |
+
cnt = [0] * num_of_loaders
|
| 304 |
+
total_metric = [0] * num_of_loaders
|
| 305 |
+
val_metric = [0] * num_of_loaders
|
| 306 |
+
for i, results in enumerate(validation_step_outputs):
|
| 307 |
+
for scores in results:
|
| 308 |
+
cnt[i] += len(scores)
|
| 309 |
+
total_metric[i] += np.sum(scores)
|
| 310 |
+
val_metric[i] = total_metric[i] / cnt[i]
|
| 311 |
+
val_metric_name = f"val_metric_{i}th_dataset"
|
| 312 |
+
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
|
| 313 |
+
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
|
| 314 |
+
|
| 315 |
+
def configure_optimizers(self):
|
| 316 |
+
# TODO add scheduler
|
| 317 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get("lr"))
|
| 318 |
+
|
| 319 |
+
return optimizer
|
| 320 |
+
|
| 321 |
+
def train_dataloader(self):
|
| 322 |
+
return self.train_dataloader
|
| 323 |
+
|
| 324 |
+
def val_dataloader(self):
|
| 325 |
+
return self.val_dataloader
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class PushToHubCallback(Callback):
|
| 329 |
+
def on_train_epoch_end(self, trainer, pl_module):
|
| 330 |
+
print(f"Pushing model to the hub, epoch {trainer.current_epoch}")
|
| 331 |
+
pl_module.model.push_to_hub(model_name,
|
| 332 |
+
commit_message=f"Training in progress, epoch {trainer.current_epoch}")
|
| 333 |
+
|
| 334 |
+
def on_train_end(self, trainer, pl_module):
|
| 335 |
+
print(f"Pushing model to the hub after training")
|
| 336 |
+
pl_module.processor.push_to_hub(model_name,
|
| 337 |
+
commit_message=f"Training done")
|
| 338 |
+
pl_module.model.push_to_hub(model_name,
|
| 339 |
+
commit_message=f"Training done")
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def run_training_donut(max_epochs_param, val_check_interval_param, warmup_steps_param):
|
| 343 |
+
worker_pid = os.getpid()
|
| 344 |
+
print(f"Handling training request with worker PID: {worker_pid}")
|
| 345 |
+
|
| 346 |
+
start_time = time.time()
|
| 347 |
+
|
| 348 |
+
# Set epochs = 30
|
| 349 |
+
# Set num_training_samples_per_epoch = training set size
|
| 350 |
+
# Set val_check_interval = 0.4
|
| 351 |
+
# Set warmup_steps: 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
|
| 352 |
+
config_params = {"max_epochs": max_epochs_param,
|
| 353 |
+
"val_check_interval": val_check_interval_param, # how many times we want to validate during an epoch
|
| 354 |
+
"check_val_every_n_epoch": 1,
|
| 355 |
+
"gradient_clip_val": 1.0,
|
| 356 |
+
"num_training_samples_per_epoch": 425,
|
| 357 |
+
"lr": 3e-5,
|
| 358 |
+
"train_batch_sizes": [8],
|
| 359 |
+
"val_batch_sizes": [1],
|
| 360 |
+
# "seed":2022,
|
| 361 |
+
"num_nodes": 1,
|
| 362 |
+
"warmup_steps": warmup_steps_param, # 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
|
| 363 |
+
"result_path": "./result",
|
| 364 |
+
"verbose": False,
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
model, processor, dataset, config, image_size, p1 = prepare_job()
|
| 368 |
+
|
| 369 |
+
model_module = DonutModelPLModule(config, processor, model)
|
| 370 |
+
|
| 371 |
+
# wandb_logger = WandbLogger(project="sparrow", name="invoices-donut-v5")
|
| 372 |
+
|
| 373 |
+
# trainer = pl.Trainer(
|
| 374 |
+
# accelerator="gpu",
|
| 375 |
+
# devices=1,
|
| 376 |
+
# max_epochs=config_params.get("max_epochs"),
|
| 377 |
+
# val_check_interval=config_params.get("val_check_interval"),
|
| 378 |
+
# check_val_every_n_epoch=config_params.get("check_val_every_n_epoch"),
|
| 379 |
+
# gradient_clip_val=config_params.get("gradient_clip_val"),
|
| 380 |
+
# precision=16, # we'll use mixed precision
|
| 381 |
+
# num_sanity_val_steps=0,
|
| 382 |
+
# # logger=wandb_logger,
|
| 383 |
+
# callbacks=[PushToHubCallback()],
|
| 384 |
+
# )
|
| 385 |
+
|
| 386 |
+
# trainer.fit(model_module)
|
| 387 |
+
|
| 388 |
+
end_time = time.time()
|
| 389 |
+
processing_time = end_time - start_time
|
| 390 |
+
|
| 391 |
+
print(f"Training done, worker PID: {worker_pid}")
|
| 392 |
+
|
| 393 |
+
return processing_time
|
routers/inference.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter, File, UploadFile, Form
|
| 2 |
+
from typing import Optional
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import urllib.request
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from config import settings
|
| 7 |
+
import utils
|
| 8 |
+
import os
|
| 9 |
+
import json
|
| 10 |
+
from routers.donut_inference import process_document_donut
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
router = APIRouter()
|
| 14 |
+
|
| 15 |
+
def count_values(obj):
|
| 16 |
+
if isinstance(obj, dict):
|
| 17 |
+
count = 0
|
| 18 |
+
for value in obj.values():
|
| 19 |
+
count += count_values(value)
|
| 20 |
+
return count
|
| 21 |
+
elif isinstance(obj, list):
|
| 22 |
+
count = 0
|
| 23 |
+
for item in obj:
|
| 24 |
+
count += count_values(item)
|
| 25 |
+
return count
|
| 26 |
+
else:
|
| 27 |
+
return 1
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@router.post("/inference")
|
| 31 |
+
async def run_inference(file: Optional[UploadFile] = File(None), image_url: Optional[str] = Form(None),
|
| 32 |
+
model_in_use: str = Form('donut'), sparrow_key: str = Form(None)):
|
| 33 |
+
|
| 34 |
+
if sparrow_key != settings.sparrow_key:
|
| 35 |
+
return {"error": "Invalid Sparrow key."}
|
| 36 |
+
|
| 37 |
+
result = []
|
| 38 |
+
if file:
|
| 39 |
+
# Ensure the uploaded file is a JPG image
|
| 40 |
+
if file.content_type not in ["image/jpeg", "image/jpg"]:
|
| 41 |
+
return {"error": "Invalid file type. Only JPG images are allowed."}
|
| 42 |
+
|
| 43 |
+
image = Image.open(BytesIO(await file.read()))
|
| 44 |
+
processing_time = 0
|
| 45 |
+
if model_in_use == 'donut':
|
| 46 |
+
result, processing_time = process_document_donut(image)
|
| 47 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file.filename, settings.model])
|
| 48 |
+
print(f"Processing time: {processing_time:.2f} seconds")
|
| 49 |
+
elif image_url:
|
| 50 |
+
# test image url: https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-data/docs/input/invoices/processed/images/invoice_10.jpg
|
| 51 |
+
with urllib.request.urlopen(image_url) as url:
|
| 52 |
+
image = Image.open(BytesIO(url.read()))
|
| 53 |
+
|
| 54 |
+
processing_time = 0
|
| 55 |
+
if model_in_use == 'donut':
|
| 56 |
+
result, processing_time = process_document_donut(image)
|
| 57 |
+
# parse file name from url
|
| 58 |
+
file_name = image_url.split("/")[-1]
|
| 59 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file_name, settings.model])
|
| 60 |
+
print(f"Processing time inference: {processing_time:.2f} seconds")
|
| 61 |
+
else:
|
| 62 |
+
result = {"info": "No input provided"}
|
| 63 |
+
|
| 64 |
+
return result
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@router.get("/statistics")
|
| 68 |
+
async def get_statistics():
|
| 69 |
+
file_path = settings.inference_stats_file
|
| 70 |
+
|
| 71 |
+
# Check if the file exists, and read its content
|
| 72 |
+
if os.path.exists(file_path):
|
| 73 |
+
with open(file_path, 'r') as file:
|
| 74 |
+
try:
|
| 75 |
+
content = json.load(file)
|
| 76 |
+
except json.JSONDecodeError:
|
| 77 |
+
content = []
|
| 78 |
+
else:
|
| 79 |
+
content = []
|
| 80 |
+
|
| 81 |
+
return content
|
routers/training.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter, Form, BackgroundTasks
|
| 2 |
+
from config import settings
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
from routers.donut_evaluate import run_evaluate_donut
|
| 6 |
+
from routers.donut_training import run_training_donut
|
| 7 |
+
import utils
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
router = APIRouter()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def invoke_training(max_epochs, val_check_interval, warmup_steps, model_in_use, sparrow_key):
|
| 14 |
+
if sparrow_key != settings.sparrow_key:
|
| 15 |
+
return {"error": "Invalid Sparrow key."}
|
| 16 |
+
|
| 17 |
+
if model_in_use == 'donut':
|
| 18 |
+
processing_time = run_training_donut(max_epochs, val_check_interval, warmup_steps)
|
| 19 |
+
utils.log_stats(settings.training_stats_file, [processing_time, settings.model])
|
| 20 |
+
print(f"Processing time training: {processing_time:.2f} seconds")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@router.post("/training")
|
| 24 |
+
async def run_training(background_tasks: BackgroundTasks,
|
| 25 |
+
max_epochs: int = Form(30),
|
| 26 |
+
val_check_interval: float = Form(0.4),
|
| 27 |
+
warmup_steps: int = Form(81),
|
| 28 |
+
model_in_use: str = Form('donut'),
|
| 29 |
+
sparrow_key: str = Form(None)):
|
| 30 |
+
|
| 31 |
+
background_tasks.add_task(invoke_training, max_epochs, val_check_interval, warmup_steps, model_in_use, sparrow_key)
|
| 32 |
+
|
| 33 |
+
return {"message": "Sparrow ML training started in the background"}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def invoke_evaluate(model_in_use, sparrow_key):
|
| 37 |
+
if sparrow_key != settings.sparrow_key:
|
| 38 |
+
return {"error": "Invalid Sparrow key."}
|
| 39 |
+
|
| 40 |
+
if model_in_use == 'donut':
|
| 41 |
+
scores, accuracy, processing_time = run_evaluate_donut()
|
| 42 |
+
utils.log_stats(settings.evaluate_stats_file, [processing_time, scores, accuracy, settings.model])
|
| 43 |
+
print(f"Processing time evaluate: {processing_time:.2f} seconds")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@router.post("/evaluate")
|
| 47 |
+
async def run_evaluate(background_tasks: BackgroundTasks,
|
| 48 |
+
model_in_use: str = Form('donut'),
|
| 49 |
+
sparrow_key: str = Form(None)):
|
| 50 |
+
|
| 51 |
+
background_tasks.add_task(invoke_evaluate, model_in_use, sparrow_key)
|
| 52 |
+
|
| 53 |
+
return {"message": "Sparrow ML model evaluation started in the background"}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@router.get("/statistics/training")
|
| 57 |
+
async def get_statistics_training():
|
| 58 |
+
file_path = settings.training_stats_file
|
| 59 |
+
|
| 60 |
+
# Check if the file exists, and read its content
|
| 61 |
+
if os.path.exists(file_path):
|
| 62 |
+
with open(file_path, 'r') as file:
|
| 63 |
+
try:
|
| 64 |
+
content = json.load(file)
|
| 65 |
+
except json.JSONDecodeError:
|
| 66 |
+
content = []
|
| 67 |
+
else:
|
| 68 |
+
content = []
|
| 69 |
+
|
| 70 |
+
return content
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@router.get("/statistics/evaluate")
|
| 74 |
+
async def get_statistics_evaluate():
|
| 75 |
+
file_path = settings.evaluate_stats_file
|
| 76 |
+
|
| 77 |
+
# Check if the file exists, and read its content
|
| 78 |
+
if os.path.exists(file_path):
|
| 79 |
+
with open(file_path, 'r') as file:
|
| 80 |
+
try:
|
| 81 |
+
content = json.load(file)
|
| 82 |
+
except json.JSONDecodeError:
|
| 83 |
+
content = []
|
| 84 |
+
else:
|
| 85 |
+
content = []
|
| 86 |
+
|
| 87 |
+
return content
|
utils.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def log_stats(file_path, new_data):
|
| 7 |
+
# Check if the file exists, and read its content
|
| 8 |
+
if os.path.exists(file_path):
|
| 9 |
+
with open(file_path, 'r') as file:
|
| 10 |
+
try:
|
| 11 |
+
content = json.load(file)
|
| 12 |
+
except json.JSONDecodeError:
|
| 13 |
+
content = []
|
| 14 |
+
else:
|
| 15 |
+
content = []
|
| 16 |
+
|
| 17 |
+
# Get the current date and time
|
| 18 |
+
now = datetime.now()
|
| 19 |
+
# Format the date and time as a string
|
| 20 |
+
date_time_string = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 21 |
+
new_data.append(date_time_string)
|
| 22 |
+
|
| 23 |
+
# Append the new data to the content
|
| 24 |
+
content.append(new_data)
|
| 25 |
+
|
| 26 |
+
# Write the updated content back to the file
|
| 27 |
+
with open(file_path, 'w') as file:
|
| 28 |
+
json.dump(content, file)
|
| 29 |
+
|