Spaces:
Runtime error
Runtime error
File size: 3,787 Bytes
01ba43f 17e2f81 01ba43f 33ab70a 01ba43f 19067cd 3f2b2d5 19067cd aeaeda9 19067cd aeaeda9 da2e9d7 3f2b2d5 1e01463 19067cd aeaeda9 01ba43f 33ab70a 3f22c56 33ab70a dc929f0 33ab70a 01ba43f 4d0bb56 01ba43f 849dd99 01ba43f 849dd99 027ee2f 01ba43f 9f4507b 01ba43f 63a76b3 01ba43f 9cdfe23 01ba43f 2f70e48 71cd062 01ba43f 33ab70a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
from PIL import Image
from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import spaces
import torch
import os
access_token = os.getenv('HF_token')
model_id = "selamw/BirdWatcher"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
def convert_to_markdown(input_text):
"""Converts bird information text to Markdown format,
making specific keywords bold and adding headings.
Args:
input_text (str): The input text containing bird information.
Returns:
str: The formatted Markdown text.
"""
bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:']
# Split into title and content based on the first ":", handling extra whitespace
if ":" in input_text:
title, content = map(str.strip, input_text.split(":", 1))
else:
title = input_text
content = ""
# Bold the keywords
for word in bold_words:
content = content.replace(word, f'\n\n**{word}')
# Construct the Markdown output with headings
formatted_output = f"**{title}**{content}"
return formatted_output.strip()
@spaces.GPU
def infer_fin_pali(image, question):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
predictions = model.generate(**inputs, max_new_tokens=512)
decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
# Ensure proper Markdown formatting
formatted_output = convert_to_markdown(decoded_output)
return formatted_output
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
h1 {
text-align: center;
}
h3 {
text-align: center;
}
h2 {
text-align: center;
}
span.gray-text {
color: gray;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1>🦩 BirdWatcher 🦜</h1>")
gr.HTML("<h3>[Powered by Fine-tuned PaliGemma]</h3>")
gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>")
gr.HTML("<p style='text-align: center;'>(There are over 11,000 bird species in the world, and this model was fine-tuned with over 500)</p>")
with gr.Tab(label="Bird Identification"):
with gr.Row():
input_img = gr.Image(label="Input Bird Image")
with gr.Column():
with gr.Row():
question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt", interactive=True)
with gr.Row():
submit_btn = gr.Button(value="Run")
with gr.Row():
output = gr.Markdown(label="Response") # Use Markdown component to display output
submit_btn.click(infer_fin_pali, [input_img, question], [output])
gr.Examples(
[["01.jpg", "Describe this bird species"],
["02.jpg", "Describe this bird species"],
["03.jpg", "Describe this bird species"],
["04.jpg", "Describe this bird species"],
["05.jpg", "Describe this bird species"],
["06.jpg", "Describe this bird species"]],
inputs=[input_img, question],
outputs=[output],
fn=infer_fin_pali,
label='Examples 👇'
)
demo.launch(debug=True, share=True) |