Spaces:
Runtime error
Runtime error
Tobias Cornille
commited on
Commit
·
9d95507
1
Parent(s):
d738b86
Fix device
Browse files- app.py +11 -31
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
import subprocess, os, sys
|
| 2 |
|
| 3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 4 |
-
|
| 5 |
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
|
| 6 |
print(f"pip install GroundingDINO = {result}")
|
| 7 |
|
|
@@ -55,20 +53,8 @@ from segment_anything import build_sam, SamPredictor
|
|
| 55 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 56 |
|
| 57 |
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
if cuda.is_available():
|
| 62 |
-
device = "cuda:0" # cuda.get_current_device()
|
| 63 |
-
else:
|
| 64 |
-
device = "cpu"
|
| 65 |
-
return device
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def load_model_hf(repo_id, filename, ckpt_config_filename, device="cpu"):
|
| 69 |
-
cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)
|
| 70 |
-
|
| 71 |
-
args = SLConfig.fromfile(cache_config_file)
|
| 72 |
model = build_model(args)
|
| 73 |
args.device = device
|
| 74 |
|
|
@@ -298,17 +284,13 @@ def generate_panoptic_mask(
|
|
| 298 |
image = image.convert("RGB")
|
| 299 |
image_array = np.asarray(image)
|
| 300 |
|
| 301 |
-
groundingdino_device = "cpu"
|
| 302 |
if device != "cpu":
|
| 303 |
try:
|
| 304 |
from GroundingDINO.groundingdino import _C
|
| 305 |
-
|
| 306 |
-
groundingdino_device = "cuda:0"
|
| 307 |
except:
|
| 308 |
warnings.warn(
|
| 309 |
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
|
| 310 |
)
|
| 311 |
-
groundingdino_device = "cpu"
|
| 312 |
|
| 313 |
# detect boxes for "thing" categories using Grounding DINO
|
| 314 |
thing_boxes, _ = dino_detection(
|
|
@@ -319,7 +301,7 @@ def generate_panoptic_mask(
|
|
| 319 |
category_name_to_id,
|
| 320 |
dino_box_threshold,
|
| 321 |
dino_text_threshold,
|
| 322 |
-
|
| 323 |
)
|
| 324 |
# compute SAM image embedding
|
| 325 |
sam_predictor.set_image(image_array)
|
|
@@ -376,29 +358,27 @@ def generate_panoptic_mask(
|
|
| 376 |
return fig
|
| 377 |
|
| 378 |
|
|
|
|
| 379 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 380 |
-
ckpt_filename = "
|
| 381 |
-
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
|
| 382 |
-
|
| 383 |
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
| 384 |
-
output_dir = "outputs"
|
| 385 |
-
device = "cuda"
|
| 386 |
-
|
| 387 |
-
device = get_device()
|
| 388 |
|
| 389 |
-
|
| 390 |
|
| 391 |
# initialize groundingdino model
|
| 392 |
-
dino_model = load_model_hf(ckpt_repo_id, ckpt_filename,
|
| 393 |
dino_model = dino_model.to(device)
|
| 394 |
|
| 395 |
# initialize SAM
|
| 396 |
-
|
|
|
|
|
|
|
| 397 |
|
| 398 |
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
| 399 |
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
|
| 400 |
"CIDAS/clipseg-rd64-refined"
|
| 401 |
)
|
|
|
|
| 402 |
|
| 403 |
|
| 404 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import subprocess, os, sys
|
| 2 |
|
|
|
|
|
|
|
| 3 |
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
|
| 4 |
print(f"pip install GroundingDINO = {result}")
|
| 5 |
|
|
|
|
| 53 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 54 |
|
| 55 |
|
| 56 |
+
def load_model_hf(model_config_path, repo_id, filename, device):
|
| 57 |
+
args = SLConfig.fromfile(model_config_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
model = build_model(args)
|
| 59 |
args.device = device
|
| 60 |
|
|
|
|
| 284 |
image = image.convert("RGB")
|
| 285 |
image_array = np.asarray(image)
|
| 286 |
|
|
|
|
| 287 |
if device != "cpu":
|
| 288 |
try:
|
| 289 |
from GroundingDINO.groundingdino import _C
|
|
|
|
|
|
|
| 290 |
except:
|
| 291 |
warnings.warn(
|
| 292 |
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
|
| 293 |
)
|
|
|
|
| 294 |
|
| 295 |
# detect boxes for "thing" categories using Grounding DINO
|
| 296 |
thing_boxes, _ = dino_detection(
|
|
|
|
| 301 |
category_name_to_id,
|
| 302 |
dino_box_threshold,
|
| 303 |
dino_text_threshold,
|
| 304 |
+
device,
|
| 305 |
)
|
| 306 |
# compute SAM image embedding
|
| 307 |
sam_predictor.set_image(image_array)
|
|
|
|
| 358 |
return fig
|
| 359 |
|
| 360 |
|
| 361 |
+
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
| 362 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 363 |
+
ckpt_filename = "groundingdino_swint_ogc.pth"
|
|
|
|
|
|
|
| 364 |
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 367 |
|
| 368 |
# initialize groundingdino model
|
| 369 |
+
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device)
|
| 370 |
dino_model = dino_model.to(device)
|
| 371 |
|
| 372 |
# initialize SAM
|
| 373 |
+
sam = build_sam(checkpoint=sam_checkpoint)
|
| 374 |
+
sam.to(device=device)
|
| 375 |
+
sam_predictor = SamPredictor(sam)
|
| 376 |
|
| 377 |
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
| 378 |
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
|
| 379 |
"CIDAS/clipseg-rd64-refined"
|
| 380 |
)
|
| 381 |
+
clipseg_model.to(device)
|
| 382 |
|
| 383 |
|
| 384 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -19,7 +19,8 @@ torch
|
|
| 19 |
torchvision
|
| 20 |
transformers
|
| 21 |
yapf
|
| 22 |
-
numba
|
| 23 |
segment_anything
|
| 24 |
scikit-image
|
| 25 |
-
segments-ai
|
|
|
|
|
|
|
|
|
| 19 |
torchvision
|
| 20 |
transformers
|
| 21 |
yapf
|
|
|
|
| 22 |
segment_anything
|
| 23 |
scikit-image
|
| 24 |
+
segments-ai
|
| 25 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 26 |
+
torch
|