Sebastien De Greef
commited on
Commit
·
6baccb3
1
Parent(s):
4af8a78
adds "gradio" to the requirements.txt and handle buttons up to training
Browse files- .gitignore +1 -0
- app.py +278 -18
- requirements.txt +4 -2
- unsloth.png +0 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.venv/*
|
app.py
CHANGED
|
@@ -1,32 +1,292 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
# Dropdown options
|
| 8 |
-
model_options = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Create the Gradio interface
|
| 11 |
with gr.Blocks() as demo:
|
| 12 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
# Checkboxes
|
| 18 |
-
checkbox1 = gr.Checkbox(label="Checkbox 1")
|
| 19 |
-
checkbox2 = gr.Checkbox(label="Checkbox 2")
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
| 25 |
# Output
|
| 26 |
-
output = gr.Textbox(label="Output")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
submit_btn.click(process_input, inputs=[model_name, checkbox1, checkbox2, text1, text2], outputs=output)
|
| 31 |
|
| 32 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import HfApi
|
| 3 |
+
from unsloth import FastLanguageModel
|
| 4 |
+
from trl import SFTTrainer
|
| 5 |
+
from transformers import TrainingArguments, TrainerCallback
|
| 6 |
+
from unsloth import is_bfloat16_supported
|
| 7 |
+
import torch
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
import logging
|
| 10 |
+
from io import StringIO
|
| 11 |
+
import time
|
| 12 |
+
import asyncio
|
| 13 |
+
# Create a string stream to capture log messages
|
| 14 |
+
log_stream = StringIO()
|
| 15 |
|
| 16 |
+
# Configure logging to use the string stream
|
| 17 |
+
logging.basicConfig(stream=log_stream, level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
log_contents = log_stream.getvalue()
|
| 20 |
+
print(log_contents)
|
| 21 |
+
logger.debug('This is a debug message')
|
| 22 |
# Dropdown options
|
| 23 |
+
model_options = [
|
| 24 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
|
| 25 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
| 26 |
+
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
|
| 27 |
+
"unsloth/llama-3-8b-Instruct-bnb-4bit",
|
| 28 |
+
"unsloth/llama-3-70b-bnb-4bit",
|
| 29 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
|
| 30 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
| 31 |
+
"unsloth/mistral-7b-bnb-4bit",
|
| 32 |
+
"unsloth/gemma-2-9b-bnb-4bit",
|
| 33 |
+
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
|
| 34 |
+
]
|
| 35 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
| 36 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
| 37 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
| 38 |
+
|
| 39 |
+
model=None
|
| 40 |
+
tokenizer = None
|
| 41 |
+
dataset = None
|
| 42 |
+
max_seq_length = 2048
|
| 43 |
+
|
| 44 |
+
class PrinterCallback(TrainerCallback):
|
| 45 |
+
step = 0
|
| 46 |
+
def __init__(self, progress):
|
| 47 |
+
self.progress = progress
|
| 48 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
| 49 |
+
_ = logs.pop("total_flos", None)
|
| 50 |
+
if state.is_local_process_zero:
|
| 51 |
+
print(logs)
|
| 52 |
+
def on_step_end(self, args, state, control, **kwargs):
|
| 53 |
+
if state.is_local_process_zero:
|
| 54 |
+
self.step = state.global_step
|
| 55 |
+
self.progress.update(self.step)
|
| 56 |
+
print("**Step ", state.global_step)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def formatting_prompts_func(examples, prompt):
|
| 61 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
| 62 |
+
instructions = examples["instruction"]
|
| 63 |
+
inputs = examples["input"]
|
| 64 |
+
outputs = examples["output"]
|
| 65 |
+
texts = []
|
| 66 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
| 67 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
| 68 |
+
text = prompt.format(instruction, input, output) + EOS_TOKEN
|
| 69 |
+
texts.append(text)
|
| 70 |
+
return { "text" : texts, }
|
| 71 |
+
pass
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def load_model(initial_model_name, load_in_4bit, max_sequence_length):
|
| 75 |
+
global model, tokenizer, max_seq_length
|
| 76 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 77 |
+
max_seq_length = max_sequence_length
|
| 78 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 79 |
+
model_name = initial_model_name,
|
| 80 |
+
max_seq_length = max_sequence_length,
|
| 81 |
+
dtype = dtype,
|
| 82 |
+
load_in_4bit = load_in_4bit,
|
| 83 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
| 84 |
+
)
|
| 85 |
+
log_contents = log_stream.getvalue()
|
| 86 |
+
print(log_contents)
|
| 87 |
+
return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
| 88 |
+
|
| 89 |
+
def load_data(dataset_name, data_template_style, data_template):
|
| 90 |
+
global dataset
|
| 91 |
+
dataset = load_dataset(dataset_name, split = "train")
|
| 92 |
+
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
|
| 93 |
+
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
async def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,
|
| 99 |
+
gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, optim, learning_rate, weight_decay, lr_scheduler_type, seed: int, output_dir, progress= gr.Progress()):
|
| 100 |
+
global model, tokenizer
|
| 101 |
+
print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {optim} optimizer, {learning_rate} learning rate, {weight_decay} weight decay, {lr_scheduler_type} lr scheduler type, {seed} seed, {output_dir} output dir")
|
| 102 |
+
iseed = seed
|
| 103 |
+
model = FastLanguageModel.get_peft_model(
|
| 104 |
+
model,
|
| 105 |
+
r = lora_r,
|
| 106 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 107 |
+
"gate_proj", "up_proj", "down_proj",],
|
| 108 |
+
lora_alpha = lora_alpha,
|
| 109 |
+
lora_dropout = lora_dropout,
|
| 110 |
+
bias = "none",
|
| 111 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
| 112 |
+
random_state=iseed,
|
| 113 |
+
use_rslora = False, # We support rank stabilized LoRA
|
| 114 |
+
loftq_config = None, # And LoftQ
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
trainer = SFTTrainer(
|
| 118 |
+
model = model,
|
| 119 |
+
tokenizer = tokenizer,
|
| 120 |
+
train_dataset = dataset,
|
| 121 |
+
dataset_text_field = "text",
|
| 122 |
+
max_seq_length = max_seq_length,
|
| 123 |
+
dataset_num_proc = 2,
|
| 124 |
+
packing = False, # Can make training 5x faster for short sequences.
|
| 125 |
+
callbacks = [PrinterCallback(progress)],
|
| 126 |
+
args = TrainingArguments(
|
| 127 |
+
per_device_train_batch_size = per_device_train_batch_size,
|
| 128 |
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
| 129 |
+
warmup_steps = warmup_steps,
|
| 130 |
+
max_steps = 60, # Set num_train_epochs = 1 for full training runs
|
| 131 |
+
learning_rate = learning_rate,
|
| 132 |
+
fp16 = not is_bfloat16_supported(),
|
| 133 |
+
bf16 = is_bfloat16_supported(),
|
| 134 |
+
logging_steps = logging_steps,
|
| 135 |
+
optim = "adamw_8bit",
|
| 136 |
+
weight_decay = weight_decay,
|
| 137 |
+
lr_scheduler_type = "linear",
|
| 138 |
+
seed = iseed,
|
| 139 |
+
report_to="tensorboard" if log_to_tensorboard else None,
|
| 140 |
+
output_dir = output_dir
|
| 141 |
+
),
|
| 142 |
+
)
|
| 143 |
+
trainer.train()
|
| 144 |
+
return "Model training",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)
|
| 145 |
+
|
| 146 |
+
def save_model():
|
| 147 |
+
return "Model saved", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=False), gr.update(interactive=False)
|
| 148 |
+
|
| 149 |
|
| 150 |
# Create the Gradio interface
|
| 151 |
with gr.Blocks() as demo:
|
| 152 |
+
with gr.Column():
|
| 153 |
+
gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False)
|
| 154 |
+
with gr.Column():
|
| 155 |
+
gr.Markdown(f"**GPU Information:** {gpu_stats.name} ({max_memory} GB)")
|
| 156 |
+
with gr.Tab("Base Model Parameters"):
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True)
|
| 160 |
+
load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True)
|
| 161 |
+
|
| 162 |
+
gr.Markdown("### Target Model Parameters")
|
| 163 |
+
with gr.Row():
|
| 164 |
+
max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length")
|
| 165 |
+
load_btn = gr.Button("Load")
|
| 166 |
+
output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False)
|
| 167 |
+
gr.Markdown("---")
|
| 168 |
+
|
| 169 |
+
with gr.Tab("Data Preparation"):
|
| 170 |
+
with gr.Row():
|
| 171 |
+
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
|
| 172 |
+
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True)
|
| 173 |
+
with gr.Row():
|
| 174 |
+
data_tempalte = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 175 |
+
|
| 176 |
+
### Instruction:
|
| 177 |
+
{}
|
| 178 |
+
|
| 179 |
+
### Input:
|
| 180 |
+
{}
|
| 181 |
+
|
| 182 |
+
### Response:
|
| 183 |
+
{}""")
|
| 184 |
+
gr.Markdown("---")
|
| 185 |
+
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
|
| 186 |
+
load_data_btn = gr.Button("Load Dataset", interactive=True)
|
| 187 |
+
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_tempalte], outputs=[output_load_data, load_data_btn])
|
| 188 |
+
|
| 189 |
+
with gr.Tab("Fine-Tuning"):
|
| 190 |
+
gr.Markdown("""### Fine-Tuned Model Parameters""")
|
| 191 |
+
with gr.Row():
|
| 192 |
+
model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True)
|
| 193 |
+
|
| 194 |
+
gr.Markdown("""### Lora Parameters""")
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
lora_r = gr.Number(label="R", value=16, interactive=True)
|
| 198 |
+
lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True)
|
| 199 |
+
lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True)
|
| 200 |
+
|
| 201 |
+
gr.Markdown("---")
|
| 202 |
+
gr.Markdown("""### Training Parameters""")
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column():
|
| 205 |
+
with gr.Row():
|
| 206 |
+
per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True)
|
| 207 |
+
warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True)
|
| 208 |
+
max_steps = gr.Number(label="Max Steps", value=60, interactive=True)
|
| 209 |
+
gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True)
|
| 210 |
+
with gr.Row():
|
| 211 |
+
logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True)
|
| 212 |
+
log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit")
|
| 216 |
+
learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True)
|
| 217 |
+
|
| 218 |
+
with gr.Row():
|
| 219 |
+
weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True)
|
| 220 |
+
lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear")
|
| 221 |
+
gr.Markdown("---")
|
| 222 |
+
|
| 223 |
+
with gr.Row():
|
| 224 |
+
seed = gr.Number(label="Seed", value=3407, interactive=True)
|
| 225 |
+
output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True)
|
| 226 |
+
gr.Markdown("---")
|
| 227 |
+
|
| 228 |
+
train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False)
|
| 229 |
+
train_btn = gr.Button("Train", visible=True)
|
| 230 |
+
train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, optim, learning_rate, weight_decay, lr_scheduler_type, seed, output_dir], outputs=[train_output, train_btn])
|
| 231 |
+
|
| 232 |
+
with gr.Tab("Save & Push Options"):
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
with gr.Row():
|
| 237 |
+
gr.Markdown("### Merging Options")
|
| 238 |
+
with gr.Column():
|
| 239 |
+
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
|
| 240 |
+
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
|
| 241 |
+
just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True)
|
| 242 |
+
gr.Markdown("---")
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
gr.Markdown("### GGUF Options")
|
| 246 |
+
with gr.Column():
|
| 247 |
+
merge_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True)
|
| 248 |
+
merge_16bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True)
|
| 249 |
+
merge_16bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True)
|
| 250 |
+
with gr.Column():
|
| 251 |
+
merge_custom = gr.Checkbox(label="Custom", value=False, interactive=True)
|
| 252 |
+
merge_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True)
|
| 253 |
+
gr.Markdown("---")
|
| 254 |
|
| 255 |
+
with gr.Row():
|
| 256 |
+
gr.Markdown("### Hugging Face Hub Options")
|
| 257 |
+
push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True)
|
| 258 |
+
with gr.Column():
|
| 259 |
+
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
|
| 260 |
+
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
|
| 261 |
+
ollama_pub_key = gr.Button("HuggingFace Access Token")
|
| 262 |
+
gr.Markdown("---")
|
| 263 |
+
|
| 264 |
+
with gr.Row():
|
| 265 |
+
gr.Markdown("### Ollama options")
|
| 266 |
+
with gr.Column():
|
| 267 |
+
ollama_create_local = gr.Checkbox(label="Create in Ollama (local)", value=False, interactive=True)
|
| 268 |
+
ollama_push_to_hub = gr.Checkbox(label="Push to Ollama", value=False, interactive=True)
|
| 269 |
+
with gr.Column():
|
| 270 |
+
ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
|
| 271 |
+
ollama_pub_key = gr.Button("Ollama Pub Key")
|
| 272 |
+
gr.Markdown("---")
|
| 273 |
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
with gr.Tab("Inference"):
|
| 276 |
+
with gr.Row():
|
| 277 |
+
gr.Textbox(label="Input Text", lines=4, value="""\
|
| 278 |
+
Continue the fibonnaci sequence.
|
| 279 |
+
# instruction
|
| 280 |
+
1, 1, 2, 3, 5, 8
|
| 281 |
+
# input
|
| 282 |
+
""", interactive=True)
|
| 283 |
+
gr.Textbox(label="Output Text", lines=4, value="""\
|
| 284 |
+
""", interactive=False)
|
| 285 |
|
| 286 |
+
inference_button = gr.Button("Inference", visible=False, interactive=False)
|
| 287 |
# Output
|
|
|
|
| 288 |
|
| 289 |
+
# Button click events
|
| 290 |
+
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])
|
|
|
|
| 291 |
|
| 292 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git
|
| 2 |
-
xformers
|
| 3 |
trl<0.9.0
|
| 4 |
peft
|
| 5 |
accelerate
|
| 6 |
-
bitsandbytes
|
|
|
|
|
|
|
|
|
| 1 |
unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git
|
| 2 |
+
xformers<0.0.27
|
| 3 |
trl<0.9.0
|
| 4 |
peft
|
| 5 |
accelerate
|
| 6 |
+
bitsandbytes
|
| 7 |
+
gradio
|
| 8 |
+
tensorboard
|
unsloth.png
ADDED
|