|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Dict |
|
from typing import Iterable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch import nn |
|
|
|
from .transcribe import transcribe as transcribe_function |
|
from .decoding import ( |
|
detect_language as detect_language_function, |
|
decode as decode_function, |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelDimensions: |
|
n_mels: int |
|
n_audio_ctx: int |
|
n_audio_state: int |
|
n_audio_head: int |
|
n_audio_layer: int |
|
n_vocab: int |
|
n_text_ctx: int |
|
n_text_state: int |
|
n_text_head: int |
|
n_text_layer: int |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
def forward(self, x: Tensor) -> Tensor: |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
class Linear(nn.Linear): |
|
def forward(self, x: Tensor) -> Tensor: |
|
return F.linear( |
|
x, |
|
self.weight.to(x.dtype), |
|
None if self.bias is None else self.bias.to(x.dtype), |
|
) |
|
|
|
|
|
class Conv1d(nn.Conv1d): |
|
def _conv_forward( |
|
self, x: Tensor, weight: Tensor, bias: Optional[Tensor] |
|
) -> Tensor: |
|
return super()._conv_forward( |
|
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) |
|
) |
|
|
|
|
|
def sinusoids(length, channels, max_timescale=10000): |
|
"""Returns sinusoids for positional embedding""" |
|
assert channels % 2 == 0 |
|
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) |
|
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] |
|
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, n_state: int, n_head: int): |
|
super().__init__() |
|
self.n_head = n_head |
|
self.query = Linear(n_state, n_state) |
|
self.key = Linear(n_state, n_state, bias=False) |
|
self.value = Linear(n_state, n_state) |
|
self.out = Linear(n_state, n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
xa: Optional[Tensor] = None, |
|
mask: Optional[Tensor] = None, |
|
kv_cache: Optional[dict] = None, |
|
): |
|
q = self.query(x) |
|
|
|
if kv_cache is None or xa is None or self.key not in kv_cache: |
|
|
|
|
|
k = self.key(x if xa is None else xa) |
|
v = self.value(x if xa is None else xa) |
|
else: |
|
|
|
k = kv_cache[self.key] |
|
v = kv_cache[self.value] |
|
|
|
wv, qk = self.qkv_attention(q, k, v, mask) |
|
return self.out(wv), qk |
|
|
|
def qkv_attention( |
|
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None |
|
): |
|
n_batch, n_ctx, n_state = q.shape |
|
scale = (n_state // self.n_head) ** -0.25 |
|
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale |
|
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale |
|
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) |
|
|
|
qk = q @ k |
|
if mask is not None: |
|
qk = qk + mask[:n_ctx, :n_ctx] |
|
qk = qk.float() |
|
|
|
w = F.softmax(qk, dim=-1).to(q.dtype) |
|
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): |
|
super().__init__() |
|
|
|
self.attn = MultiHeadAttention(n_state, n_head) |
|
self.attn_ln = LayerNorm(n_state) |
|
|
|
self.cross_attn = ( |
|
MultiHeadAttention(n_state, n_head) if cross_attention else None |
|
) |
|
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None |
|
|
|
n_mlp = n_state * 4 |
|
self.mlp = nn.Sequential( |
|
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) |
|
) |
|
self.mlp_ln = LayerNorm(n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
xa: Optional[Tensor] = None, |
|
mask: Optional[Tensor] = None, |
|
kv_cache: Optional[dict] = None, |
|
): |
|
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] |
|
if self.cross_attn: |
|
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] |
|
x = x + self.mlp(self.mlp_ln(x)) |
|
return x |
|
|
|
|
|
class AudioEncoder(nn.Module): |
|
def __init__( |
|
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int |
|
): |
|
super().__init__() |
|
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) |
|
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) |
|
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) |
|
|
|
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( |
|
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] |
|
) |
|
self.ln_post = LayerNorm(n_state) |
|
|
|
def forward(self, x: Tensor): |
|
""" |
|
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) |
|
the mel spectrogram of the audio |
|
""" |
|
x = F.gelu(self.conv1(x)) |
|
x = F.gelu(self.conv2(x)) |
|
x = x.permute(0, 2, 1) |
|
|
|
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape" |
|
x = (x + self.positional_embedding).to(x.dtype) |
|
|
|
for block in self.blocks: |
|
x = block(x) |
|
|
|
x = self.ln_post(x) |
|
return x |
|
|
|
|
|
class TextDecoder(nn.Module): |
|
def __init__( |
|
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int |
|
): |
|
super().__init__() |
|
|
|
self.token_embedding = nn.Embedding(n_vocab, n_state) |
|
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) |
|
|
|
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( |
|
[ |
|
ResidualAttentionBlock(n_state, n_head, cross_attention=True) |
|
for _ in range(n_layer) |
|
] |
|
) |
|
self.ln = LayerNorm(n_state) |
|
|
|
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) |
|
self.register_buffer("mask", mask, persistent=False) |
|
|
|
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): |
|
""" |
|
x : torch.LongTensor, shape = (batch_size, <= n_ctx) |
|
the text tokens |
|
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) |
|
the encoded audio features to be attended on |
|
""" |
|
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 |
|
x = ( |
|
self.token_embedding(x) |
|
+ self.positional_embedding[offset : offset + x.shape[-1]] |
|
) |
|
x = x.to(xa.dtype) |
|
|
|
for block in self.blocks: |
|
x = block(x, xa, mask=self.mask, kv_cache=kv_cache) |
|
|
|
x = self.ln(x) |
|
logits = ( |
|
x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1) |
|
).float() |
|
|
|
return logits |
|
|
|
|
|
class Whisper(nn.Module): |
|
def __init__(self, dims: ModelDimensions): |
|
super().__init__() |
|
self.dims = dims |
|
self.encoder = AudioEncoder( |
|
self.dims.n_mels, |
|
self.dims.n_audio_ctx, |
|
self.dims.n_audio_state, |
|
self.dims.n_audio_head, |
|
self.dims.n_audio_layer, |
|
) |
|
self.decoder = TextDecoder( |
|
self.dims.n_vocab, |
|
self.dims.n_text_ctx, |
|
self.dims.n_text_state, |
|
self.dims.n_text_head, |
|
self.dims.n_text_layer, |
|
) |
|
|
|
def embed_audio(self, mel: torch.Tensor): |
|
return self.encoder(mel) |
|
|
|
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor): |
|
return self.decoder(tokens, audio_features) |
|
|
|
def forward( |
|
self, mel: torch.Tensor, tokens: torch.Tensor |
|
) -> Dict[str, torch.Tensor]: |
|
return self.decoder(tokens, self.encoder(mel)) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def is_multilingual(self): |
|
return self.dims.n_vocab == 51865 |
|
|
|
def install_kv_cache_hooks(self, cache: Optional[dict] = None): |
|
""" |
|
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value |
|
tensors calculated for the previous positions. This method returns a dictionary that stores |
|
all caches, and the necessary hooks for the key and value projection modules that save the |
|
intermediate tensors to be reused during later calculations. |
|
|
|
Returns |
|
------- |
|
cache : Dict[nn.Module, torch.Tensor] |
|
A dictionary object mapping the key/value projection modules to its cache |
|
hooks : List[RemovableHandle] |
|
List of PyTorch RemovableHandle objects to stop the hooks to be called |
|
""" |
|
cache = {**cache} if cache is not None else {} |
|
hooks = [] |
|
|
|
def save_to_cache(module, _, output): |
|
if ( |
|
module not in cache |
|
or output.shape[1] > self.decoder.positional_embedding.shape[0] |
|
): |
|
cache[ |
|
module |
|
] = output |
|
else: |
|
cache[module] = torch.cat([cache[module], output], dim=1).detach() |
|
return cache[module] |
|
|
|
def install_hooks(layer: nn.Module): |
|
if isinstance(layer, MultiHeadAttention): |
|
hooks.append(layer.key.register_forward_hook(save_to_cache)) |
|
hooks.append(layer.value.register_forward_hook(save_to_cache)) |
|
|
|
self.decoder.apply(install_hooks) |
|
return cache, hooks |
|
|
|
detect_language = detect_language_function |
|
transcribe = transcribe_function |
|
decode = decode_function |
|
|