Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -70,7 +70,7 @@ from models.soundstream_hubert_new import SoundStream
|
|
| 70 |
from vocoder import build_codec_model, process_audio
|
| 71 |
from post_process_audio import replace_low_freq_with_energy_matched
|
| 72 |
|
| 73 |
-
device = "cuda"
|
| 74 |
|
| 75 |
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
|
@@ -90,23 +90,18 @@ mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model"
|
|
| 90 |
|
| 91 |
codectool = CodecManipulator("xcodec", 0, 1)
|
| 92 |
model_config = OmegaConf.load(basic_model_config)
|
| 93 |
-
# Load codec model
|
| 94 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
| 95 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
| 96 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
| 97 |
-
codec_model
|
| 98 |
codec_model.eval()
|
| 99 |
|
| 100 |
-
# Preload and compile vocoders
|
| 101 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
| 102 |
vocal_decoder.to(device)
|
| 103 |
inst_decoder.to(device)
|
| 104 |
-
vocal_decoder = torch.compile(vocal_decoder)
|
| 105 |
-
inst_decoder = torch.compile(inst_decoder)
|
| 106 |
vocal_decoder.eval()
|
| 107 |
inst_decoder.eval()
|
| 108 |
|
| 109 |
-
cuda_idx = 0
|
| 110 |
|
| 111 |
def generate_music(
|
| 112 |
max_new_tokens=5,
|
|
@@ -117,14 +112,13 @@ def generate_music(
|
|
| 117 |
audio_prompt_path="",
|
| 118 |
prompt_start_time=0.0,
|
| 119 |
prompt_end_time=30.0,
|
|
|
|
| 120 |
rescale=False,
|
| 121 |
):
|
| 122 |
if use_audio_prompt and not audio_prompt_path:
|
| 123 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
| 124 |
-
|
| 125 |
-
# ------------------------------------------
|
| 126 |
max_new_tokens = max_new_tokens * 100
|
| 127 |
-
stage1_output_data = {}
|
| 128 |
|
| 129 |
with tempfile.TemporaryDirectory() as output_dir:
|
| 130 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
|
@@ -179,17 +173,7 @@ def generate_music(
|
|
| 179 |
# Format text prompt
|
| 180 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
| 181 |
|
| 182 |
-
|
| 183 |
-
'top_p': 0.93,
|
| 184 |
-
'temperature': 1.0,
|
| 185 |
-
'repetition_penalty': 1.2,
|
| 186 |
-
'top_k': 50, # Faster than top_p alone
|
| 187 |
-
'num_beams': 1, # Disable beam search
|
| 188 |
-
'max_new_tokens': max_new_tokens,
|
| 189 |
-
'min_new_tokens': 100,
|
| 190 |
-
'do_sample': True,
|
| 191 |
-
'use_cache': True,
|
| 192 |
-
}
|
| 193 |
|
| 194 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
| 195 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
|
@@ -226,7 +210,7 @@ def generate_music(
|
|
| 226 |
print(
|
| 227 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
| 228 |
input_ids = input_ids[:, -(max_context):]
|
| 229 |
-
with torch.inference_mode(), torch.autocast(device_type=
|
| 230 |
output_seq = model.generate(
|
| 231 |
input_ids=input_ids,
|
| 232 |
max_new_tokens=max_new_tokens,
|
|
@@ -390,7 +374,8 @@ def generate_music(
|
|
| 390 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
| 391 |
# Execute the command
|
| 392 |
try:
|
| 393 |
-
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
|
|
|
| 394 |
return audio_data
|
| 395 |
except Exception as e:
|
| 396 |
gr.Warning("An Error Occured: " + str(e))
|
|
|
|
| 70 |
from vocoder import build_codec_model, process_audio
|
| 71 |
from post_process_audio import replace_low_freq_with_energy_matched
|
| 72 |
|
| 73 |
+
device = "cuda:0"
|
| 74 |
|
| 75 |
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
|
|
|
| 90 |
|
| 91 |
codectool = CodecManipulator("xcodec", 0, 1)
|
| 92 |
model_config = OmegaConf.load(basic_model_config)
|
|
|
|
| 93 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
| 94 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
| 95 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
| 96 |
+
codec_model.to(device)
|
| 97 |
codec_model.eval()
|
| 98 |
|
|
|
|
| 99 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
| 100 |
vocal_decoder.to(device)
|
| 101 |
inst_decoder.to(device)
|
|
|
|
|
|
|
| 102 |
vocal_decoder.eval()
|
| 103 |
inst_decoder.eval()
|
| 104 |
|
|
|
|
| 105 |
|
| 106 |
def generate_music(
|
| 107 |
max_new_tokens=5,
|
|
|
|
| 112 |
audio_prompt_path="",
|
| 113 |
prompt_start_time=0.0,
|
| 114 |
prompt_end_time=30.0,
|
| 115 |
+
cuda_idx=0,
|
| 116 |
rescale=False,
|
| 117 |
):
|
| 118 |
if use_audio_prompt and not audio_prompt_path:
|
| 119 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
| 120 |
+
cuda_idx = cuda_idx
|
|
|
|
| 121 |
max_new_tokens = max_new_tokens * 100
|
|
|
|
| 122 |
|
| 123 |
with tempfile.TemporaryDirectory() as output_dir:
|
| 124 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
|
|
|
| 173 |
# Format text prompt
|
| 174 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
| 175 |
|
| 176 |
+
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
| 179 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
|
|
|
| 210 |
print(
|
| 211 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
| 212 |
input_ids = input_ids[:, -(max_context):]
|
| 213 |
+
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
| 214 |
output_seq = model.generate(
|
| 215 |
input_ids=input_ids,
|
| 216 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 374 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
| 375 |
# Execute the command
|
| 376 |
try:
|
| 377 |
+
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
| 378 |
+
cuda_idx=0, max_new_tokens=max_new_tokens)
|
| 379 |
return audio_data
|
| 380 |
except Exception as e:
|
| 381 |
gr.Warning("An Error Occured: " + str(e))
|