Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import subprocess | |
| import os | |
| import shutil | |
| import tempfile | |
| import spaces | |
| import torch | |
| import sys | |
| import uuid | |
| import re | |
| print("Installing flash-attn...") | |
| # Install flash attention | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| from huggingface_hub import snapshot_download | |
| # Create xcodec_mini_infer folder | |
| folder_path = './xcodec_mini_infer' | |
| # Create the folder if it doesn't exist | |
| if not os.path.exists(folder_path): | |
| os.mkdir(folder_path) | |
| print(f"Folder created at: {folder_path}") | |
| else: | |
| print(f"Folder already exists at: {folder_path}") | |
| snapshot_download( | |
| repo_id="m-a-p/xcodec_mini_infer", | |
| local_dir="./xcodec_mini_infer" | |
| ) | |
| # Change to the "inference" directory | |
| inference_dir = "." | |
| try: | |
| os.chdir(inference_dir) | |
| print(f"Changed working directory to: {os.getcwd()}") | |
| except FileNotFoundError: | |
| print(f"Directory not found: {inference_dir}") | |
| exit(1) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
| sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
| # don't change above code | |
| import argparse | |
| import numpy as np | |
| import json | |
| from omegaconf import OmegaConf | |
| import torchaudio | |
| from torchaudio.transforms import Resample | |
| import soundfile as sf | |
| from tqdm import tqdm | |
| from einops import rearrange | |
| from codecmanipulator import CodecManipulator | |
| from mmtokenizer import _MMSentencePieceTokenizer | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
| from models.soundstream_hubert_new import SoundStream | |
| from vocoder import build_codec_model, process_audio | |
| from post_process_audio import replace_low_freq_with_energy_matched | |
| # Initialize device | |
| device = "cuda:0" | |
| # Load models once and reuse | |
| print("Loading models...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "m-a-p/YuE-s1-7B-anneal-en-cot", | |
| torch_dtype=torch.float16, | |
| attn_implementation="flash_attention_2", | |
| ).to(device).eval() | |
| basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' | |
| resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' | |
| config_path = './xcodec_mini_infer/decoders/config.yaml' | |
| vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' | |
| inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' | |
| # Load codec model | |
| model_config = OmegaConf.load(basic_model_config) | |
| codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
| codec_model.load_state_dict(torch.load(resume_path, map_location='cpu')['codec_model']) | |
| codec_model.eval() | |
| # Preload and compile vocoders | |
| vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) | |
| vocal_decoder.to(device).eval() | |
| inst_decoder.to(device).eval() | |
| # Tokenizer and codec tool | |
| mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
| codectool = CodecManipulator("xcodec", 0, 1) | |
| def generate_music(genre_txt, lyrics_txt, max_new_tokens=5, run_n_segments=2, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, rescale=False): | |
| if use_audio_prompt and not audio_prompt_path: | |
| raise FileNotFoundError("Please provide an audio prompt filepath when enabling 'use_audio_prompt'!") | |
| max_new_tokens *= 100 | |
| top_p = 0.93 | |
| temperature = 1.0 | |
| repetition_penalty = 1.2 | |
| # Split lyrics into segments | |
| def split_lyrics(lyrics): | |
| pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
| segments = re.findall(pattern, lyrics, re.DOTALL) | |
| return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
| lyrics = split_lyrics(lyrics_txt + "\n") | |
| full_lyrics = "\n".join(lyrics) | |
| prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genre_txt.strip()}\n{full_lyrics}"] + lyrics | |
| raw_output = None | |
| stage1_output_set = [] | |
| class BlockTokenRangeProcessor(LogitsProcessor): | |
| def __init__(self, start_id, end_id): | |
| self.blocked_token_ids = list(range(start_id, end_id)) | |
| def __call__(self, input_ids, scores): | |
| scores[:, self.blocked_token_ids] = -float("inf") | |
| return scores | |
| for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
| section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
| guidance_scale = 1.5 if i <= 1 else 1.2 | |
| if i == 0: | |
| continue | |
| if i == 1 and use_audio_prompt: | |
| audio_prompt = load_audio_mono(audio_prompt_path) | |
| audio_prompt = audio_prompt.unsqueeze(0).to(device) | |
| raw_codes = codec_model.encode(audio_prompt, target_bw=0.5).transpose(0, 1).cpu().numpy().astype(np.int16) | |
| audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)] | |
| audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] | |
| sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
| else: | |
| head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
| prompt_ids = head_id + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
| prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
| input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
| max_context = 16384 - max_new_tokens - 1 | |
| if input_ids.shape[-1] > max_context: | |
| input_ids = input_ids[:, -(max_context):] | |
| with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): | |
| output_seq = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| min_new_tokens=100, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| eos_token_id=mmtokenizer.eoa, | |
| pad_token_id=mmtokenizer.eoa, | |
| logits_processor=LogitsProcessorList([ | |
| BlockTokenRangeProcessor(0, 32002), | |
| BlockTokenRangeProcessor(32016, 32016) | |
| ]), | |
| guidance_scale=guidance_scale, | |
| use_cache=True, | |
| top_k=50, | |
| num_beams=1 | |
| ) | |
| if output_seq[0][-1].item() != mmtokenizer.eoa: | |
| tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(device) | |
| output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
| raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) if i > 1 else output_seq | |
| # Process and save outputs | |
| ids = raw_output[0].cpu().numpy() | |
| soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
| eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
| vocals, instrumentals = [], [] | |
| for i in range(len(soa_idx)): | |
| codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] | |
| if codec_ids[0] == 32016: | |
| codec_ids = codec_ids[1:] | |
| codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
| vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])) | |
| instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])) | |
| vocals = np.concatenate(vocals, axis=1) | |
| instrumentals = np.concatenate(instrumentals, axis=1) | |
| # Decode and mix audio | |
| decoded_vocals = codec_model.decode(torch.as_tensor(vocals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0) | |
| decoded_instrumentals = codec_model.decode(torch.as_tensor(instrumentals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0) | |
| mixed_audio = (decoded_vocals + decoded_instrumentals) / 2 | |
| mixed_audio_np = mixed_audio.detach().numpy() # Convert to NumPy array | |
| mixed_audio_int16 = (mixed_audio_np * 32767).astype(np.int16) # Convert to int16 | |
| # Return the sample rate and the converted audio data | |
| return (16000, mixed_audio_int16) | |
| def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10): | |
| try: | |
| return generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, max_new_tokens=max_new_tokens) | |
| except Exception as e: | |
| gr.Warning("An Error Occurred: " + str(e)) | |
| return None | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
| gr.HTML(""" | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href="https://github.com/multimodal-art-projection/YuE"> | |
| <img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
| </a> | |
| <a href="https://map-yue.github.io"> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
| </a> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| genre_txt = gr.Textbox(label="Genre") | |
| lyrics_txt = gr.Textbox(label="Lyrics") | |
| with gr.Column(): | |
| num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
| max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5, | |
| interactive=True) | |
| submit_btn = gr.Button("Submit") | |
| music_out = gr.Audio(label="Audio Result") | |
| # gr.Examples( | |
| # examples=[ | |
| # ["Rap, Hip-Hop, Street Vibes, Tough, Piercing Vocals, Piano, Synthesizer, Clear Male Vocals", | |
| # """[verse] | |
| # Woke up in the morning, sun is shining bright | |
| # Chasing all my dreams, gotta get my mind right | |
| # City lights are fading, but my vision's clear | |
| # Got my team beside me, no room for fear | |
| # Walking through the streets, beats inside my head | |
| # Every step I take, closer to the bread | |
| # People passing by, they don't understand | |
| # Building up my future with my own two hands | |
| # """], | |
| # ], | |
| # inputs=[genre_txt, lyrics_txt], | |
| # outputs=[music_out], | |
| # cache_examples=True, | |
| # cache_mode="eager", | |
| # fn=infer | |
| # ) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "female blues airy vocal bright vocal piano sad romantic guitar jazz", | |
| """[verse] | |
| In the quiet of the evening, shadows start to fall | |
| Whispers of the night wind echo through the hall | |
| Lost within the silence, I hear your gentle voice | |
| Guiding me back homeward, making my heart rejoice | |
| [chorus] | |
| Don't let this moment fade, hold me close tonight | |
| With you here beside me, everything's alright | |
| Can't imagine life alone, don't want to let you go | |
| Stay with me forever, let our love just flow | |
| """ | |
| ], | |
| [ | |
| "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
| """[verse] | |
| Woke up in the morning, sun is shining bright | |
| Chasing all my dreams, gotta get my mind right | |
| City lights are fading, but my vision's clear | |
| Got my team beside me, no room for fear | |
| Walking through the streets, beats inside my head | |
| Every step I take, closer to the bread | |
| People passing by, they don't understand | |
| Building up my future with my own two hands | |
| [chorus] | |
| This is my life, and I'm aiming for the top | |
| Never gonna quit, no, I'm never gonna stop | |
| Through the highs and lows, I'mma keep it real | |
| Living out my dreams with this mic and a deal | |
| """ | |
| ] | |
| ], | |
| inputs=[genre_txt, lyrics_txt], | |
| outputs=[music_out], | |
| cache_examples=True, | |
| cache_mode="eager", | |
| fn=infer | |
| ) | |
| submit_btn.click( | |
| fn=infer, | |
| inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
| outputs=[music_out] | |
| ) | |
| demo.queue().launch(show_error=True) |