Major update. General code revision. Improved config variables. Dataframe based review frame now includes text, items can be searched and excluded. Costs now estimated. Option for adding cost codes added. Option to extract text only.
0ea8b9e
import boto3 | |
from typing import List | |
import io | |
import os | |
import json | |
from collections import defaultdict | |
import pikepdf | |
import time | |
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult | |
from tools.config import AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION | |
def extract_textract_metadata(response:object): | |
"""Extracts metadata from an AWS Textract response.""" | |
#print("Document metadata:", response['DocumentMetadata']) | |
request_id = response['ResponseMetadata']['RequestId'] | |
pages = response['DocumentMetadata']['Pages'] | |
#number_of_pages = response['DocumentMetadata']['NumberOfPages'] | |
return str({ | |
'RequestId': request_id, | |
'Pages': pages | |
#, | |
#'NumberOfPages': number_of_pages | |
}) | |
def analyse_page_with_textract(pdf_page_bytes:object, page_no:int, client:str="", handwrite_signature_checkbox:List[str]=["Extract handwriting", "Redact all identified signatures"]): | |
''' | |
Analyse page with AWS Textract | |
''' | |
if client == "": | |
try: | |
if AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
client = boto3.client('textract', | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION) | |
else: | |
client = boto3.client('textract', region_name=AWS_REGION) | |
except: | |
print("Cannot connect to AWS Textract") | |
return [], "" # Return an empty list and an empty string | |
#print("Analysing page with AWS Textract") | |
#print("pdf_page_bytes:", pdf_page_bytes) | |
#print("handwrite_signature_checkbox:", handwrite_signature_checkbox) | |
# Redact signatures if specified | |
if "Redact all identified signatures" in handwrite_signature_checkbox: | |
#print("Analysing document with signature detection") | |
try: | |
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"]) | |
except Exception as e: | |
print("Textract call failed due to:", e, "trying again in 3 seconds.") | |
time.sleep(3) | |
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"]) | |
else: | |
#print("Analysing document without signature detection") | |
# Call detect_document_text to extract plain text | |
try: | |
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes}) | |
except Exception as e: | |
print("Textract call failed due to:", e, "trying again in 5 seconds.") | |
time.sleep(5) | |
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes}) | |
# Add the 'Page' attribute to each block | |
if "Blocks" in response: | |
for block in response["Blocks"]: | |
block["Page"] = page_no # Inject the page number into each block | |
# Wrap the response with the page number in the desired format | |
wrapped_response = { | |
'page_no': page_no, | |
'data': response | |
} | |
#print("response:", response) | |
request_metadata = extract_textract_metadata(response) # Metadata comes out as a string | |
#print("request_metadata:", request_metadata) | |
# Return a list containing the wrapped response and the metadata | |
return wrapped_response, request_metadata # Return as a list to match the desired structure | |
def convert_pike_pdf_page_to_bytes(pdf:object, page_num:int): | |
# Create a new empty PDF | |
new_pdf = pikepdf.Pdf.new() | |
# Specify the page number you want to extract (0-based index) | |
page_num = 0 # Example: first page | |
# Extract the specific page and add it to the new PDF | |
new_pdf.pages.append(pdf.pages[page_num]) | |
# Save the new PDF to a bytes buffer | |
buffer = io.BytesIO() | |
new_pdf.save(buffer) | |
# Get the PDF bytes | |
pdf_bytes = buffer.getvalue() | |
# Now you can use the `pdf_bytes` to convert it to an image or further process | |
buffer.close() | |
#images = convert_from_bytes(pdf_bytes) | |
#image = images[0] | |
return pdf_bytes | |
def json_to_ocrresult(json_data:dict, page_width:float, page_height:float, page_no:int): | |
''' | |
Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures. | |
''' | |
all_ocr_results = [] | |
signature_or_handwriting_recogniser_results = [] | |
signature_recogniser_results = [] | |
handwriting_recogniser_results = [] | |
signatures = [] | |
handwriting = [] | |
ocr_results_with_children = {} | |
text_block={} | |
i = 1 | |
# Assuming json_data is structured as a dictionary with a "pages" key | |
#if "pages" in json_data: | |
# Find the specific page data | |
page_json_data = json_data #next((page for page in json_data["pages"] if page["page_no"] == page_no), None) | |
#print("page_json_data:", page_json_data) | |
if "Blocks" in page_json_data: | |
# Access the data for the specific page | |
text_blocks = page_json_data["Blocks"] # Access the Blocks within the page data | |
# This is a new page | |
elif "page_no" in page_json_data: | |
text_blocks = page_json_data["data"]["Blocks"] | |
is_signature = False | |
is_handwriting = False | |
for text_block in text_blocks: | |
if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') | | |
# Extract text and bounding box for the line | |
line_bbox = text_block["Geometry"]["BoundingBox"] | |
line_left = int(line_bbox["Left"] * page_width) | |
line_top = int(line_bbox["Top"] * page_height) | |
line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width) | |
line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height) | |
width_abs = int(line_bbox["Width"] * page_width) | |
height_abs = int(line_bbox["Height"] * page_height) | |
if text_block['BlockType'] == 'LINE': | |
# Extract text and bounding box for the line | |
line_text = text_block.get('Text', '') | |
words = [] | |
current_line_handwriting_results = [] # Track handwriting results for this line | |
if 'Relationships' in text_block: | |
for relationship in text_block['Relationships']: | |
if relationship['Type'] == 'CHILD': | |
for child_id in relationship['Ids']: | |
child_block = next((block for block in text_blocks if block['Id'] == child_id), None) | |
if child_block and child_block['BlockType'] == 'WORD': | |
word_text = child_block.get('Text', '') | |
word_bbox = child_block["Geometry"]["BoundingBox"] | |
confidence = child_block.get('Confidence','') | |
word_left = int(word_bbox["Left"] * page_width) | |
word_top = int(word_bbox["Top"] * page_height) | |
word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width) | |
word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height) | |
# Extract BoundingBox details | |
word_width = word_bbox["Width"] | |
word_height = word_bbox["Height"] | |
# Convert proportional coordinates to absolute coordinates | |
word_width_abs = int(word_width * page_width) | |
word_height_abs = int(word_height * page_height) | |
words.append({ | |
'text': word_text, | |
'bounding_box': (word_left, word_top, word_right, word_bottom) | |
}) | |
# Check for handwriting | |
text_type = child_block.get("TextType", '') | |
if text_type == "HANDWRITING": | |
is_handwriting = True | |
entity_name = "HANDWRITING" | |
word_end = len(word_text) | |
recogniser_result = CustomImageRecognizerResult( | |
entity_type=entity_name, | |
text=word_text, | |
score=confidence, | |
start=0, | |
end=word_end, | |
left=word_left, | |
top=word_top, | |
width=word_width_abs, | |
height=word_height_abs | |
) | |
# Add to handwriting collections immediately | |
handwriting.append(recogniser_result) | |
handwriting_recogniser_results.append(recogniser_result) | |
signature_or_handwriting_recogniser_results.append(recogniser_result) | |
current_line_handwriting_results.append(recogniser_result) | |
# If handwriting or signature, add to bounding box | |
elif (text_block['BlockType'] == 'SIGNATURE'): | |
line_text = "SIGNATURE" | |
is_signature = True | |
entity_name = "SIGNATURE" | |
confidence = text_block.get('Confidence', 0) | |
word_end = len(line_text) | |
recogniser_result = CustomImageRecognizerResult( | |
entity_type=entity_name, | |
text=line_text, | |
score=confidence, | |
start=0, | |
end=word_end, | |
left=line_left, | |
top=line_top, | |
width=width_abs, | |
height=height_abs | |
) | |
# Add to signature collections immediately | |
signatures.append(recogniser_result) | |
signature_recogniser_results.append(recogniser_result) | |
signature_or_handwriting_recogniser_results.append(recogniser_result) | |
words = [{ | |
'text': line_text, | |
'bounding_box': (line_left, line_top, line_right, line_bottom) | |
}] | |
ocr_results_with_children["text_line_" + str(i)] = { | |
"line": i, | |
'text': line_text, | |
'bounding_box': (line_left, line_top, line_right, line_bottom), | |
'words': words | |
} | |
# Create OCRResult with absolute coordinates | |
ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs) | |
all_ocr_results.append(ocr_result) | |
is_signature_or_handwriting = is_signature | is_handwriting | |
# If it is signature or handwriting, will overwrite the default behaviour of the PII analyser | |
if is_signature_or_handwriting: | |
if recogniser_result not in signature_or_handwriting_recogniser_results: | |
signature_or_handwriting_recogniser_results.append(recogniser_result) | |
if is_signature: | |
if recogniser_result not in signature_recogniser_results: | |
signature_recogniser_results.append(recogniser_result) | |
if is_handwriting: | |
if recogniser_result not in handwriting_recogniser_results: | |
handwriting_recogniser_results.append(recogniser_result) | |
i += 1 | |
return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children | |
def load_and_convert_textract_json(textract_json_file_path:str, log_files_output_paths:str): | |
""" | |
Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary. | |
""" | |
if not os.path.exists(textract_json_file_path): | |
print("No existing Textract results file found.") | |
return {}, True, log_files_output_paths # Return empty dict and flag indicating missing file | |
no_textract_file = False | |
print("Found existing Textract json results file.") | |
# Track log files | |
if textract_json_file_path not in log_files_output_paths: | |
log_files_output_paths.append(textract_json_file_path) | |
try: | |
with open(textract_json_file_path, 'r', encoding='utf-8') as json_file: | |
textract_data = json.load(json_file) | |
except json.JSONDecodeError: | |
print("Error: Failed to parse Textract JSON file. Returning empty data.") | |
return {}, True, log_files_output_paths # Indicate failure | |
# Check if conversion is needed | |
if "pages" in textract_data: | |
print("JSON already in the correct format for app. No changes needed.") | |
return textract_data, False, log_files_output_paths # No conversion required | |
if "Blocks" in textract_data: | |
print("Need to convert Textract JSON to app format.") | |
try: | |
textract_data = restructure_textract_output(textract_data) | |
return textract_data, False, log_files_output_paths # Successfully converted | |
except Exception as e: | |
print("Failed to convert JSON data to app format due to:", e) | |
return {}, True, log_files_output_paths # Conversion failed | |
else: | |
print("Invalid Textract JSON format: 'Blocks' missing.") | |
print("textract data:", textract_data) | |
return {}, True, log_files_output_paths # Return empty data if JSON is not recognized | |
def restructure_textract_output(textract_output: dict): | |
""" | |
Reorganise Textract output from the bulk Textract analysis option on AWS | |
into a format that works in this redaction app, reducing size. | |
""" | |
pages_dict = {} | |
# Extract total pages from DocumentMetadata | |
document_metadata = textract_output.get("DocumentMetadata", {}) | |
for block in textract_output.get("Blocks", []): | |
page_no = block.get("Page", 1) # Default to 1 if missing | |
# Initialize page structure if not already present | |
if page_no not in pages_dict: | |
pages_dict[page_no] = {"page_no": str(page_no), "data": {"Blocks": []}} | |
# Keep only essential fields to reduce size | |
filtered_block = { | |
key: block[key] for key in ["BlockType", "Confidence", "Text", "Geometry", "Page", "Id", "Relationships"] | |
if key in block | |
} | |
pages_dict[page_no]["data"]["Blocks"].append(filtered_block) | |
# Convert pages dictionary to a sorted list | |
structured_output = { | |
"DocumentMetadata": document_metadata, # Store metadata separately | |
"pages": [pages_dict[page] for page in sorted(pages_dict.keys())] | |
} | |
return structured_output | |