import sys
sys.path.append("../../")

import os
import json
import time
import psutil
import argparse

import cv2
import torch
import torchvision
import numpy as np
import gradio as gr

from tools.painter import mask_painter
from track_anything import TrackingAnything

from model.misc import get_device
from utils.download_util import load_file_from_url, download_url_to_file

# make sample videos into mp4 as git does not allow mp4 without lfs
sample_videos_path = os.path.join('/home/user/app/web-demos/hugging_face/', "test_sample/")
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281805130-e57c7016-5a6d-4d3b-9df9-b4ea6372cc87.mp4", os.path.join(sample_videos_path, "test-sample0.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828039-5def0fc9-3a22-45b7-838d-6bf78b6772c3.mp4", os.path.join(sample_videos_path, "test-sample1.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281807801-69b9f70c-1e56-428d-9b1b-4870c5e533a7.mp4", os.path.join(sample_videos_path, "test-sample2.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281808625-ad98f03f-99c7-4008-acf1-3d7beb48f13b.mp4", os.path.join(sample_videos_path, "test-sample3.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828066-ee09ae82-916f-4a2e-a6c7-6fc50645fd20.mp4", os.path.join(sample_videos_path, "test-sample4.mp4"))


def parse_augment():
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default=None)
    parser.add_argument('--sam_model_type', type=str, default="vit_h")
    parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")  
    parser.add_argument('--mask_save', default=False)
    args = parser.parse_args()
    
    if not args.device:
        args.device = str(get_device())

    return args 

# convert points input to prompt state
def get_prompt(click_state, click_input):
    inputs = json.loads(click_input)
    points = click_state[0]
    labels = click_state[1]
    for input in inputs:
        points.append(input[:2])
        labels.append(input[2])
    click_state[0] = points
    click_state[1] = labels
    prompt = {
        "prompt_type":["click"],
        "input_point":click_state[0],
        "input_label":click_state[1],
        "multimask_output":"True",
    }
    return prompt

# extract frames from upload video
def get_frames_from_video(video_input, video_state):
    """
    Args:
        video_path:str
        timestamp:float64
    Return 
        [[0:nearest_frame], [nearest_frame:], nearest_frame]
    """
    video_path = video_input
    frames = []
    user_name = time.time()
    status_ok = True
    operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)]
    try:
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

        if length >= 500:
            operation_log = [("You uploaded a video with more than 500 frames. Stop the video extraction. Kindly lower the video frame rate to a value below 500. We highly recommend deploying the demo locally for long video processing.", "Error")]
            ret, frame = cap.read()
            if ret == True:
                original_h, original_w = frame.shape[:2]
                scale_factor = min(1, 1280/max(original_h, original_w))
                target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor)
                frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            status_ok = False
        else:
            while cap.isOpened():
                ret, frame = cap.read()
                if ret == True:
                    # resize input image
                    original_h, original_w = frame.shape[:2]
                    scale_factor = min(1, 1280/max(original_h, original_w))
                    target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor)
                    if scale_factor != 1:
                        frame = cv2.resize(frame, (target_w, target_h))
                    frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                else:
                    break
            t = len(frames)
            if t > 0:
                print(f'Inp video shape: t_{t}, s_{original_h}x{original_w} to s_{target_h}x{target_w}')
            else:
                print(f'Inp video shape: t_{t}, no input video!!!')
    except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
        status_ok = False
        print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
    
    # initialize video_state
    if frames[0].shape[0] > 720 or frames[0].shape[1] > 720:
         operation_log = [(f"Video uploaded! Try to click the image shown in step2 to add masks. (You uploaded a video with a size of {original_w}x{original_h}, and the length of its longest edge exceeds 720 pixels. We may resize the input video during processing.)", "Normal")]

    video_state = {
        "user_name": user_name,
        "video_name": os.path.split(video_path)[-1],
        "origin_images": frames,
        "painted_images": frames.copy(),
        "masks": [np.zeros((target_h, target_w), np.uint8)]*len(frames),
        "logits": [None]*len(frames),
        "select_frame_number": 0,
        "fps": fps
        }
    video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), length, (original_w, original_h))
    model.samcontroler.sam_controler.reset_image() 
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
    return video_state, video_info, video_state["origin_images"][0], gr.update(visible=status_ok, maximum=len(frames), value=1), gr.update(visible=status_ok, maximum=len(frames), value=len(frames)), \
                        gr.update(visible=status_ok), gr.update(visible=status_ok), \
                        gr.update(visible=status_ok), gr.update(visible=status_ok),\
                        gr.update(visible=status_ok), gr.update(visible=status_ok), \
                        gr.update(visible=status_ok), gr.update(visible=status_ok), \
                        gr.update(visible=status_ok), gr.update(visible=status_ok), \
                        gr.update(visible=status_ok), gr.update(visible=status_ok, choices=[], value=[]), \
                        gr.update(visible=True, value=operation_log), gr.update(visible=status_ok, value=operation_log)

# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):

    # images = video_state[1]
    image_selection_slider -= 1
    video_state["select_frame_number"] = image_selection_slider

    # once select a new template frame, set the image in sam

    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])

    operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")]

    return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log

# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
    interactive_state["track_end_number"] = track_pause_number_slider
    operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")]

    return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log

# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
    """
    Args:
        template_frame: PIL.Image
        point_prompt: flag for positive or negative button click
        click_state: [[points], [labels]]
    """
    if point_prompt == "Positive":
        coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
        interactive_state["positive_click_times"] += 1
    else:
        coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
        interactive_state["negative_click_times"] += 1
    
    # prompt for sam model
    model.samcontroler.sam_controler.reset_image()
    model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
    prompt = get_prompt(click_state=click_state, click_input=coordinate)

    mask, logit, painted_image = model.first_frame_click( 
                                                      image=video_state["origin_images"][video_state["select_frame_number"]], 
                                                      points=np.array(prompt["input_point"]),
                                                      labels=np.array(prompt["input_label"]),
                                                      multimask=prompt["multimask_output"],
                                                      )
    video_state["masks"][video_state["select_frame_number"]] = mask
    video_state["logits"][video_state["select_frame_number"]] = logit
    video_state["painted_images"][video_state["select_frame_number"]] = painted_image

    operation_log = [("[Must Do]", "Add mask"), (": add the current displayed mask for video segmentation.\n", None),
                     ("[Optional]", "Remove mask"), (": remove all added masks.\n", None),
                     ("[Optional]", "Clear clicks"), (": clear current displayed mask.\n", None),
                     ("[Optional]", "Click image"), (": Try to click the image shown in step2 if you want to generate more masks.\n", None)]
    return painted_image, video_state, interactive_state, operation_log, operation_log

def add_multi_mask(video_state, interactive_state, mask_dropdown):
    try:
        mask = video_state["masks"][video_state["select_frame_number"]]
        interactive_state["multi_mask"]["masks"].append(mask)
        interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
        mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
        select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown)
        operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")]
    except:
        operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")]
    return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log

def clear_click(video_state, click_state):
    click_state = [[],[]]
    template_frame = video_state["origin_images"][video_state["select_frame_number"]]
    operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")]
    return template_frame, click_state, operation_log, operation_log

def remove_multi_mask(interactive_state, mask_dropdown):
    interactive_state["multi_mask"]["mask_names"]= []
    interactive_state["multi_mask"]["masks"] = []

    operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")]
    return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log

def show_mask(video_state, interactive_state, mask_dropdown):
    mask_dropdown.sort()
    select_frame = video_state["origin_images"][video_state["select_frame_number"]]
    for i in range(len(mask_dropdown)):
        mask_number = int(mask_dropdown[i].split("_")[1]) - 1
        mask = interactive_state["multi_mask"]["masks"][mask_number]
        select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
    
    operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")]
    return select_frame, operation_log, operation_log

# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
    operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")]
    model.cutie.clear_memory()
    if interactive_state["track_end_number"]:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
    else:
        following_frames = video_state["origin_images"][video_state["select_frame_number"]:]

    if interactive_state["multi_mask"]["masks"]:
        if len(mask_dropdown) == 0:
            mask_dropdown = ["mask_001"]
        mask_dropdown.sort()
        template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
        for i in range(1,len(mask_dropdown)):
            mask_number = int(mask_dropdown[i].split("_")[1]) - 1 
            template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
        video_state["masks"][video_state["select_frame_number"]]= template_mask
    else:      
        template_mask = video_state["masks"][video_state["select_frame_number"]]
    fps = video_state["fps"]

    # operation error
    if len(np.unique(template_mask))==1:
        template_mask[0][0]=1
        operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")]
        # return video_output, video_state, interactive_state, operation_error
    masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
    # clear GPU memory
    model.cutie.clear_memory()

    if interactive_state["track_end_number"]: 
        video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
        video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
        video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
    else:
        video_state["masks"][video_state["select_frame_number"]:] = masks
        video_state["logits"][video_state["select_frame_number"]:] = logits
        video_state["painted_images"][video_state["select_frame_number"]:] = painted_images

    video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
    interactive_state["inference_times"] += 1
    
    print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], 
                                                                                                                                           interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
                                                                                                                                           interactive_state["positive_click_times"],
                                                                                                                                        interactive_state["negative_click_times"]))

    #### shanggao code for mask save
    if interactive_state["mask_save"]:
        if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
            os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
        i = 0
        print("save mask")
        for mask in video_state["masks"]:
            np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
            i+=1
        # save_mask(video_state["masks"], video_state["video_name"])
    #### shanggao code for mask save
    return video_output, video_state, interactive_state, operation_log, operation_log

# inpaint 
def inpaint_video(video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown):
    operation_log = [("",""), ("Inpainting finished!","Normal")]

    frames = np.asarray(video_state["origin_images"])
    fps = video_state["fps"]
    inpaint_masks = np.asarray(video_state["masks"])
    if len(mask_dropdown) == 0:
        mask_dropdown = ["mask_001"]
    mask_dropdown.sort()
    # convert mask_dropdown to mask numbers
    inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
    # interate through all masks and remove the masks that are not in mask_dropdown
    unique_masks = np.unique(inpaint_masks)
    num_masks = len(unique_masks) - 1
    for i in range(1, num_masks + 1):
        if i in inpaint_mask_numbers:
            continue
        inpaint_masks[inpaint_masks==i] = 0
    
    # inpaint for videos
    inpainted_frames = model.baseinpainter.inpaint(frames, 
                                                   inpaint_masks, 
                                                   ratio=resize_ratio_number, 
                                                   dilate_radius=dilate_radius_number,
                                                   raft_iter=raft_iter_number,
                                                   subvideo_length=subvideo_length_number, 
                                                   neighbor_length=neighbor_length_number, 
                                                   ref_stride=ref_stride_number)   # numpy array, T, H, W, 3

    video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video

    return video_output, operation_log, operation_log

# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
    """
    Generates a video from a list of frames.
    
    Args:
        frames (list of numpy arrays): The frames to include in the video.
        output_path (str): The path to save the generated video.
        fps (int, optional): The frame rate of the output video. Defaults to 30.
    """
    frames = torch.from_numpy(np.asarray(frames))
    if not os.path.exists(os.path.dirname(output_path)):
        os.makedirs(os.path.dirname(output_path))
    torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
    return output_path

def restart():
    operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")]
    return {
            "user_name": "",
            "video_name": "",
            "origin_images": None,
            "painted_images": None,
            "masks": None,
            "inpaint_masks": None,
            "logits": None,
            "select_frame_number": 0,
            "fps": 30
        }, {
            "inference_times": 0,
            "negative_click_times" : 0,
            "positive_click_times": 0,
            "mask_save": args.mask_save,
            "multi_mask": {
                "mask_names": [],
                "masks": []
            },
            "track_end_number": None,
        }, [[],[]], None, None, None, \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \
        gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log)


# args, defined in track_anything.py
args = parse_augment()
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
sam_checkpoint_url_dict = {
    'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
    'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
    'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_fodler = os.path.join('..', '..', 'weights')

sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler)
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler)
propainter_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'ProPainter.pth'), checkpoint_fodler)
raft_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'raft-things.pth'), checkpoint_fodler)
flow_completion_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), checkpoint_fodler)

# initialize sam, cutie, propainter models
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, args)


title = r"""<h1 align="center">ProPainter: Improving Propagation and Transformer for Video Inpainting</h1>"""

description = r"""
<center><img src='https://github.com/sczhou/ProPainter/raw/main/assets/propainter_logo1_glow.png' alt='Propainter logo' style="width:180px; margin-bottom:20px"></center>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/ProPainter' target='_blank'><b>Improving Propagation and Transformer for Video Inpainting (ICCV 2023)</b></a>.<br>
🔥 Propainter is a robust inpainting algorithm.<br>
🤗 Try to drop your video, add the masks and get the the inpainting results!<br>
"""
article = r"""
If ProPainter is helpful, please help to ⭐ the <a href='https://github.com/sczhou/ProPainter' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/ProPainter?style=social)](https://github.com/sczhou/ProPainter)

---

📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2023propainter,
   title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting},
   author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change},
   booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year={2023}
}
```

📋 **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. 
Redistribution and use for non-commercial purposes should follow this license.

📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.
<div>
    🤗 Find Me:
    <a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a> 
    <a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a>
</div>

"""
css = """
.gradio-container {width: 85% !important}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;}
span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;}
button {border-radius: 8px !important;}
.add_button {background-color: #4CAF50 !important;}
.remove_button {background-color: #f44336 !important;}
.clear_button {background-color: gray !important;}
.mask_button_group {gap: 10px !important;}
.video {height: 300px !important;}
.image {height: 300px !important;}
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
"""

with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface:
    click_state = gr.State([[],[]])

    interactive_state = gr.State({
        "inference_times": 0,
        "negative_click_times" : 0,
        "positive_click_times": 0,
        "mask_save": args.mask_save,
        "multi_mask": {
            "mask_names": [],
            "masks": []
        },
        "track_end_number": None,
        }
    )

    video_state = gr.State(
        {
        "user_name": "",
        "video_name": "",
        "origin_images": None,
        "painted_images": None,
        "masks": None,
        "inpaint_masks": None,
        "logits": None,
        "select_frame_number": 0,
        "fps": 30
        }
    )

    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Group(elem_classes="gr-monochrome-group"):
        with gr.Row():
            with gr.Accordion('ProPainter Parameters (click to expand)', open=False):
                with gr.Row():
                    resize_ratio_number = gr.Slider(label='Resize ratio',
                                            minimum=0.01,
                                            maximum=1.0,
                                            step=0.01,
                                            value=1.0)
                    raft_iter_number = gr.Slider(label='Iterations for RAFT inference.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=20,)
                with gr.Row():
                    dilate_radius_number = gr.Slider(label='Mask dilation for video and flow masking.',
                                            minimum=0,
                                            maximum=10,
                                            step=1,
                                            value=8,)

                    subvideo_length_number = gr.Slider(label='Length of sub-video for long video inference.',
                                            minimum=40,
                                            maximum=200,
                                            step=1,
                                            value=80,)
                with gr.Row():
                    neighbor_length_number = gr.Slider(label='Length of local neighboring frames.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=10,)
                    
                    ref_stride_number = gr.Slider(label='Stride of global reference frames.',
                                            minimum=5,
                                            maximum=20,
                                            step=1,
                                            value=10,)
  
    with gr.Column():
        # input video
        gr.Markdown("## Step1: Upload video")
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):      
                video_input = gr.Video(elem_classes="video")
                extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") 
            with gr.Column(scale=2):
                run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")],
                                                color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"})
                video_info = gr.Textbox(label="Video Info")
                
        
        # add masks
        step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False)
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
                image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False)
                track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
            with gr.Column(scale=2, elem_classes="jc_center"):
                run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")],
                                                 color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"},
                                                 visible=False)
                with gr.Column():
                    point_prompt = gr.Radio(
                        choices=["Positive", "Negative"],
                        value="Positive",
                        label="Point prompt",
                        interactive=True,
                        visible=False,
                        min_width=100,
                        scale=1,)
                    with gr.Row(elem_classes="mask_button_group"):
                        Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button")
                        remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button")
                        clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False, elem_classes="clear_button")
                mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False)
            
        # output video
        step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False)
        with gr.Row(equal_height=True):
            with gr.Column(scale=2):
                tracking_video_output = gr.Video(visible=False, elem_classes="video")
                tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center")
            with gr.Column(scale=2):
                inpaiting_video_output = gr.Video(visible=False, elem_classes="video")
                inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center")

    # first step: get the video information 
    extract_frames_button.click(
        fn=get_frames_from_video,
        inputs=[
            video_input, video_state
        ],
        outputs=[video_state, video_info, template_frame,
                 image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame,
                 tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2]
    )   

    # second step: select images from slider
    image_selection_slider.release(fn=select_template, 
                                   inputs=[image_selection_slider, video_state, interactive_state], 
                                   outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image")
    track_pause_number_slider.release(fn=get_end_number, 
                                   inputs=[track_pause_number_slider, video_state, interactive_state], 
                                   outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image")
    
    # click select image to get mask using sam
    template_frame.select(
        fn=sam_refine,
        inputs=[video_state, point_prompt, click_state, interactive_state],
        outputs=[template_frame, video_state, interactive_state, run_status, run_status2]
    )

    # add different mask
    Add_mask_button.click(
        fn=add_multi_mask,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2]
    )

    remove_mask_button.click(
        fn=remove_multi_mask,
        inputs=[interactive_state, mask_dropdown],
        outputs=[interactive_state, mask_dropdown, run_status, run_status2]
    )

    # tracking video from select image and mask
    tracking_video_predict_button.click(
        fn=vos_tracking_video,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2]
    )

    # inpaint video from select image and mask
    inpaint_video_predict_button.click(
        fn=inpaint_video,
        inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown],
        outputs=[inpaiting_video_output, run_status, run_status2]
    )

    # click to get mask
    mask_dropdown.change(
        fn=show_mask,
        inputs=[video_state, interactive_state, mask_dropdown],
        outputs=[template_frame, run_status, run_status2]
    )
    
    # clear input
    video_input.change(
        fn=restart,
        inputs=[],
        outputs=[ 
            video_state,
            interactive_state,
            click_state,
            tracking_video_output, inpaiting_video_output,
            template_frame,
            tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
            Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
        ],
        queue=False,
        show_progress=False)
    
    video_input.clear(
        fn=restart,
        inputs=[],
        outputs=[ 
            video_state,
            interactive_state,
            click_state,
            tracking_video_output, inpaiting_video_output,
            template_frame,
            tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, 
            Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
        ],
        queue=False,
        show_progress=False)
    
    # points clear
    clear_button_click.click(
        fn = clear_click,
        inputs = [video_state, click_state,],
        outputs = [template_frame,click_state, run_status, run_status2],
    )

    # set example
    gr.Markdown("## Examples")
    gr.Examples(
        examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]],
        inputs=[video_input],
    )
    gr.Markdown(article)

iface.queue()
iface.launch(debug=True)