--- title: README emoji: 🦀 colorFrom: green colorTo: gray sdk: static pinned: false license: bsd-3-clause short_description: Probabilistic modeling and analysis of single-cell omics dat --- # **scvi-tools** Welcome to the **scvi-tools** Model Card. This repository contains state-of-the-art probabilistic models tailored for analyzing single-cell omics data, enabling researchers to gain meaningful biological insights through cutting-edge machine learning techniques. **scvi-tools** is a member of the [scverse ecosystem](https://scverse.org). --- ## **Model Overview** scvi-tools offers a comprehensive suite of models designed to address various challenges in single-cell data analysis. These models are scalable and extensively documented. ### **Key Models** - **[scVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#scvi)**: - A variational autoencoder for dimensionality reduction, batch correction, and clustering. - Ideal for processing single-cell RNA-seq data. - **[SCANVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#scanvi)**: - A semi-supervised model designed for label prediction, especially in cases of partially labeled data. - **[TOTALVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#totalvi)**: - A multi-modal model for joint analysis of RNA and protein data, additionally allowing imputation of missing protein data. - **[MultiVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#multivi)**: - A multi-modal model for joint analysis of RNA, ATAC and protein data, enabling integrative insights from diverse omics data. - **[DestVI](https://docs.scvi-tools.org/en/stable/user_guide/models.html#destvi)**: - A deconvolution model for prediction of single-cell profiles given subcellular spatial transcriptomics data. We provide here pre-trained single cell models. - **[Stereoscope](https://docs.scvi-tools.org/en/stable/user_guide/models.html#stereoscope)**: - A deconvolution model for prediction of cell-type composition given subcellular spatial transcriptomics data. We provide here pre-trained single cell models. Explore the full list of models in our **[documentation](https://docs.scvi-tools.org/en/stable/user_guide/index.html)**. Please reach out on [discourse](https://discourse.scverse.org) if you want to add additional models to scvi-hub. --- ## **Key Applications** These models have been applied to a wide array of biological questions, such as: - Batch correction across experiments. - Identification of rare cell populations. - Multi-modal integration of single-cell RNA and protein data. - Differential expression analysis in disease contexts. For hands-on examples, refer to our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)**. To learn how to --- ## **Publications** - **[Original scvi-tools Paper](https://www.nature.com/articles/s41587-021-01206-w)**: - Published in *Nature Biotechnology*, this paper introduces the foundational principles and applications of scvi-tools. - **[scvi-hub Preprint](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v1)**: - This manuscript showcases real-world applications of scvi-hub in diverse biological contexts and provides building blocks - to apply these models in your own research --- ## **How to Get Started** 1. Visit our **[official documentation](https://docs.scvi-tools.org)** to get started with installation and explore our API. 2. Follow our **[tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)** for step-by-step guides on using scvi-tools effectively. 3. Dive into our **[models](https://docs.scvi-tools.org/en/stable/user_guide/index.html)** to see how they can transform your single-cell analysis. Learn how to apply scvi-hub for analysis of query datasets in our [HLCA tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/query_hlca_knn.html) Discover how to efficiently access CELLxGENE census using our minified models in our [CELLxGENE census tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/hub/cellxgene_census_model.html) --- ## **Contributing** scvi-tools is an open-source initiative. Contributions are welcome! Join us on GitHub to submit issues, suggest features, or collaborate. Contribute your own models to allow the single-cell community to leverage your reference datasets. --- ## **Contact** - Website: [https://scvi-tools.org](https://scvi-tools.org) - GitHub: [https://github.com/scverse/scvi-tools](https://github.com/scverse/scvi-tools) - Tutorials: [scvi-tools Tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)