Spaces:
Running
Running
import sklearn | |
import gradio as gr | |
import joblib | |
import pandas as pd | |
import datasets | |
pipe = joblib.load("./model.pkl") | |
title = "Supersoaker Defective Product Prediction" | |
description = "This model predicts Supersoaker production line failures. Drag and drop any slice from dataset or edit values as you wish in below dataframe component." | |
with open("./config.json") as f: | |
config_dict = eval(f.read()) | |
headers = config_dict["sklearn"]["columns"] | |
df = datasets.load_dataset("merve/supersoaker-failures") | |
df = df["train"].to_pandas() | |
df.dropna(axis=0, inplace=True) | |
inputs = [gr.Dataframe(headers = headers, row_count = (2, "dynamic"), col_count=(24,"dynamic"), label="Input Data", interactive=1)] | |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])] | |
def infer(inputs): | |
data = pd.DataFrame(inputs, columns=headers) | |
predictions = pipe.predict(inputs) | |
return pd.DataFrame(predictions, columns=["results"]) | |
gr.Interface(infer, inputs = inputs, outputs = outputs, title = title, | |
description = description, examples=[df.head(3)], cache_examples=False).launch(debug=True) | |