# adapted from: # https://medium.com/@james.irving.phd/creating-your-personal-chatbot-using-hugging-face-spaces-and-streamlit-596a54b9e3ed import os from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline import streamlit as st # Define the model repository REPO_NAME = 'schuler/experimental-JP47D20' # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(REPO_NAME, trust_remote_code=True) generator_conf = GenerationConfig.from_pretrained(REPO_NAME) model = AutoModelForCausalLM.from_pretrained(REPO_NAME, trust_remote_code=True) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Configure the Streamlit app st.set_page_config(page_title="Experimental Model - Under Construction", page_icon="🤗") st.title("Experimental Model - Under Construction") st.markdown(f"*This chat uses the {REPO_NAME} model. Feel free to ask questions such as 'What is biology?' or 'What is the human body?'*") # Initialize session state for avatars if "avatars" not in st.session_state: st.session_state.avatars = {'user': None, 'assistant': None} # Initialize session state for user text input if 'user_text' not in st.session_state: st.session_state.user_text = None # Initialize session state for model parameters if "max_response_length" not in st.session_state: st.session_state.max_response_length = 256 if "system_message" not in st.session_state: st.session_state.system_message = "You are a friendly AI conversing with a human user." if "starter_message" not in st.session_state: st.session_state.starter_message = "Hello, there! How can I help you today?" # Sidebar for settings with st.sidebar: st.header("System Settings") # AI Settings st.session_state.system_message = st.text_area( "System Message", value=st.session_state.system_message ) st.session_state.starter_message = st.text_area( 'First AI Message', value=st.session_state.starter_message ) # Model Settings st.session_state.max_response_length = st.number_input( "Max Response Length", value=st.session_state.max_response_length ) # Avatar Selection st.markdown("*Select Avatars:*") col1, col2 = st.columns(2) with col1: st.session_state.avatars['assistant'] = st.selectbox( "AI Avatar", options=["🤗", "💬", "🤖"], index=0 ) with col2: st.session_state.avatars['user'] = st.selectbox( "User Avatar", options=["👤", "👱‍♂️", "👨🏾", "👩", "👧🏾"], index=0 ) # Reset Chat History reset_history = st.button("Reset Chat History") # Initialize or reset chat history if "chat_history" not in st.session_state or reset_history: st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] def get_response(system_message, chat_history, user_text, max_new_tokens=256): """ Generates a response from the chatbot model. Args: system_message (str): The system message for the conversation. chat_history (list): The list of previous chat messages. user_text (str): The user's input text. max_new_tokens (int): The maximum number of new tokens to generate. Returns: tuple: A tuple containing the generated response and the updated chat history. """ # Build the conversation prompt prompt = "" # f"{system_message}\nCurrent Conversation:\n" for message in chat_history: role = "<|assistant|>" if message['role'] == 'assistant' else "<|user|>" prompt += f"\n{role}\n{message['content']}\n" prompt += f"\n<|user|>\n{user_text}\n<|assistant|>\n" # Generate the response response_output = generator( prompt, generation_config=generator_conf, max_new_tokens=max_new_tokens, do_sample=True, top_p=0.5, repetition_penalty=1.2 ) generated_text = response_output[0]['generated_text'] # Extract the assistant's response assistant_response = generated_text[len(prompt):].strip() # Update the chat history chat_history.append({'role': 'user', 'content': user_text}) chat_history.append({'role': 'assistant', 'content': assistant_response}) return assistant_response, chat_history # Chat interface chat_interface = st.container() with chat_interface: output_container = st.container() # Display chat messages with output_container: for message in st.session_state.chat_history: if message['role'] == 'system': continue with st.chat_message(message['role'], avatar=st.session_state.avatars[message['role']]): st.markdown(message['content']) # User input area (moved to the bottom) st.session_state.user_text = st.chat_input(placeholder="Enter your text here.") # When the user enters new text if st.session_state.user_text: # Display the user's message with st.chat_message("user", avatar=st.session_state.avatars['user']): st.markdown(st.session_state.user_text) # Display a spinner while generating the response with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']): with st.spinner("Thinking..."): # Generate the assistant's response response, st.session_state.chat_history = get_response( system_message=st.session_state.system_message, user_text=st.session_state.user_text, chat_history=st.session_state.chat_history, max_new_tokens=st.session_state.max_response_length, ) st.markdown(response) # Clear the user input st.session_state.user_text = None