Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,40 +4,59 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
from ultralytics import YOLO
|
6 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Download the model from Hugging Face
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Detection function for images
|
13 |
def detect_on_image(image):
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
# Detection function for videos
|
19 |
def detect_on_video(video):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
# Gradio Interface
|
39 |
image_input = gr.Image(type="pil", label="Upload Image")
|
40 |
-
video_input = gr.Video(
|
41 |
image_output = gr.Image(type="pil", label="Detected Image")
|
42 |
video_output = gr.Video(label="Detected Video")
|
43 |
|
|
|
4 |
import numpy as np
|
5 |
from ultralytics import YOLO
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Verify that Hugging Face repo and file paths are correct
|
10 |
+
REPO_ID = "StephanST/WALDO30" # Update if the repository ID is different
|
11 |
+
MODEL_FILENAME = "WALDO30_yolov8m_640x640.pt"
|
12 |
|
13 |
# Download the model from Hugging Face
|
14 |
+
try:
|
15 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME)
|
16 |
+
except Exception as e:
|
17 |
+
raise RuntimeError(f"Failed to download model from Hugging Face. Verify `repo_id` and `filename`. Error: {e}")
|
18 |
+
|
19 |
+
# Load the YOLOv8 model
|
20 |
+
try:
|
21 |
+
model = YOLO(model_path) # Ensure the model path is correct
|
22 |
+
except Exception as e:
|
23 |
+
raise RuntimeError(f"Failed to load the YOLO model. Verify the model file at `{model_path}`. Error: {e}")
|
24 |
|
25 |
# Detection function for images
|
26 |
def detect_on_image(image):
|
27 |
+
try:
|
28 |
+
results = model(image) # Perform detection
|
29 |
+
annotated_frame = results[0].plot() # Get annotated image
|
30 |
+
return Image.fromarray(annotated_frame)
|
31 |
+
except Exception as e:
|
32 |
+
raise RuntimeError(f"Error during image processing: {e}")
|
33 |
|
34 |
# Detection function for videos
|
35 |
def detect_on_video(video):
|
36 |
+
try:
|
37 |
+
temp_video_path = "processed_video.mp4"
|
38 |
+
cap = cv2.VideoCapture(video)
|
39 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
40 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
|
41 |
+
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
42 |
+
|
43 |
+
while cap.isOpened():
|
44 |
+
ret, frame = cap.read()
|
45 |
+
if not ret:
|
46 |
+
break
|
47 |
+
results = model(frame) # Perform detection
|
48 |
+
annotated_frame = results[0].plot() # Get annotated frame
|
49 |
+
out.write(annotated_frame)
|
50 |
+
|
51 |
+
cap.release()
|
52 |
+
out.release()
|
53 |
+
return temp_video_path
|
54 |
+
except Exception as e:
|
55 |
+
raise RuntimeError(f"Error during video processing: {e}")
|
56 |
|
57 |
# Gradio Interface
|
58 |
image_input = gr.Image(type="pil", label="Upload Image")
|
59 |
+
video_input = gr.Video(label="Upload Video") # Removed invalid `type` argument
|
60 |
image_output = gr.Image(type="pil", label="Detected Image")
|
61 |
video_output = gr.Video(label="Detected Video")
|
62 |
|