scfive commited on
Commit
ddc2772
·
verified ·
1 Parent(s): fd4884c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install --upgrade transformers gradio
2
+ import torch
3
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection, pipeline
4
+ from PIL import Image, ImageDraw
5
+ import gradio as gr
6
+
7
+ device = "cuda" if torch.cuda.is_available() else "cpu"
8
+ print(f"Using device: {device}")
9
+
10
+ checkpoint = "PekingU/rtdetr_v2_r50vd" # Or any of the other checkpoints
11
+
12
+ image_processor = AutoImageProcessor.from_pretrained(checkpoint)
13
+ model = AutoModelForObjectDetection.from_pretrained(checkpoint).to(device)
14
+
15
+ # Colors for visualization (same as before)
16
+ COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
17
+ [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] * 100
18
+
19
+ def inference(image, threshold=0.3):
20
+ """Performs object detection and returns an annotated image."""
21
+ pipe = pipeline("object-detection", model=model, image_processor=image_processor, device=device)
22
+ results = pipe(image, threshold=threshold)
23
+
24
+ annotated_image = image.copy()
25
+ draw = ImageDraw.Draw(annotated_image)
26
+
27
+ for i, result in enumerate(results):
28
+ box = result["box"]
29
+ color = tuple([int(x * 255) for x in COLORS[i]])
30
+ xmin, ymin, xmax, ymax = box["xmin"], box["ymin"], box["xmax"], box["ymax"]
31
+ draw.rectangle((xmin, ymin, xmax, ymax), fill=None, outline=color, width=2)
32
+ draw.text((xmin, ymin), text=f"{result['label']}: {result['score']:.2f}", fill=color)
33
+
34
+ return annotated_image
35
+
36
+ # Gradio interface
37
+ iface = gr.Interface(
38
+ fn=inference,
39
+ inputs=gr.Image(type="pil"),
40
+ outputs=gr.Image(type="pil"),
41
+ title="RT-DETR v2 Object Detection",
42
+ description="Upload an image to detect objects.",
43
+ examples=["/content/crowd7.jpg"],
44
+ )
45
+
46
+ iface.launch()