|
import gradio as gr |
|
import hf_transfer |
|
from transformers import AutoModelForCausalLM, AutoTokenizer,StoppingCriteriaList,TextIteratorStreamer |
|
from threading import Thread |
|
import os |
|
HFTOKEN=os.getenv("hftoken") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"kubernetes-bad/chargen-v2", |
|
token = HFTOKEN |
|
) |
|
tknz=AutoTokenizer.from_pretrained("kubernetes-bad/chargen-v2",token=HFTOKEN) |
|
|
|
|
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
model_inputs = tokenizer.build_chat_input(history=messages, role='user').input_ids.to( |
|
next(model.parameters()).device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True) |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), |
|
tokenizer.get_command("<|observation|>")] |
|
generate_kwargs = { |
|
"input_ids": model_inputs, |
|
"streamer": streamer, |
|
"max_new_tokens": max_tokens, |
|
"do_sample": True, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"stopping_criteria": StoppingCriteriaList([stop]), |
|
"repetition_penalty": 1, |
|
"eos_token_id": eos_token_id, |
|
} |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
for new_token in streamer: |
|
if new_token and '<|user|>' in new_token: |
|
new_token = new_token.split('<|user|>')[0] |
|
if new_token: |
|
history[-1][1] += new_token |
|
yield history |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
js_func = """ |
|
function refresh() { |
|
const url = new URL(window.location); |
|
|
|
if (url.searchParams.get('__theme') !== 'dark') { |
|
url.searchParams.set('__theme', 'dark'); |
|
window.location.href = url.href; |
|
} |
|
} |
|
""" |
|
app = gr.ChatInterface( |
|
|
|
respond, |
|
js=js_func, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a bot who generates perfect roleplaying charecters.", label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |