Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,17 +2,52 @@ import gradio as gr
|
|
| 2 |
import subprocess
|
| 3 |
import threading
|
| 4 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Fonction pour lancer train.py en arrière-plan
|
| 7 |
def train_model():
|
| 8 |
-
process = subprocess.Popen(["python", "
|
| 9 |
stdout, stderr = process.communicate()
|
| 10 |
-
return stdout.decode() + "\n" + stderr.decode() # Retourne les logs
|
| 11 |
|
| 12 |
-
#
|
| 13 |
threading.Thread(target=train_model, daemon=True).start()
|
| 14 |
|
| 15 |
-
# ✅
|
| 16 |
time.sleep(3)
|
| 17 |
|
| 18 |
# Interface Gradio
|
|
|
|
| 2 |
import subprocess
|
| 3 |
import threading
|
| 4 |
import time
|
| 5 |
+
from huggingface_hub import InferenceClient
|
| 6 |
+
|
| 7 |
+
# Définir la fonction `respond` avant de l'utiliser
|
| 8 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 9 |
+
|
| 10 |
+
def respond(
|
| 11 |
+
message,
|
| 12 |
+
history: list[tuple[str, str]],
|
| 13 |
+
system_message,
|
| 14 |
+
max_tokens,
|
| 15 |
+
temperature,
|
| 16 |
+
top_p,
|
| 17 |
+
):
|
| 18 |
+
messages = [{"role": "system", "content": system_message}]
|
| 19 |
+
|
| 20 |
+
for val in history:
|
| 21 |
+
if val[0]:
|
| 22 |
+
messages.append({"role": "user", "content": val[0]})
|
| 23 |
+
if val[1]:
|
| 24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
+
|
| 26 |
+
messages.append({"role": "user", "content": message})
|
| 27 |
+
|
| 28 |
+
response = ""
|
| 29 |
+
|
| 30 |
+
for message in client.chat_completion(
|
| 31 |
+
messages,
|
| 32 |
+
max_tokens=max_tokens,
|
| 33 |
+
stream=True,
|
| 34 |
+
temperature=temperature,
|
| 35 |
+
top_p=top_p,
|
| 36 |
+
):
|
| 37 |
+
token = message.choices[0].delta.content
|
| 38 |
+
response += token
|
| 39 |
+
yield response
|
| 40 |
|
| 41 |
# Fonction pour lancer train.py en arrière-plan
|
| 42 |
def train_model():
|
| 43 |
+
process = subprocess.Popen(["python", "train.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 44 |
stdout, stderr = process.communicate()
|
| 45 |
+
return stdout.decode() + "\n" + stderr.decode() # Retourne les logs d'entraînement
|
| 46 |
|
| 47 |
+
# Lancer l'entraînement en arrière-plan
|
| 48 |
threading.Thread(target=train_model, daemon=True).start()
|
| 49 |
|
| 50 |
+
# ✅ Ajout d'un délai pour éviter les conflits au démarrage
|
| 51 |
time.sleep(3)
|
| 52 |
|
| 53 |
# Interface Gradio
|