Spaces:
Running
Running
import os | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms.functional as TF | |
from matplotlib import colormaps | |
from transformers import AutoModel | |
# ---------------------------- | |
# Configuration | |
# ---------------------------- | |
# Define available models | |
DEFAULT_MODEL_ID = "facebook/dinov3-vits16plus-pretrain-lvd1689m" | |
ALT_MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m" | |
AVAILABLE_MODELS = [DEFAULT_MODEL_ID, ALT_MODEL_ID] | |
PATCH_SIZE = 16 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Normalization constants (standard for ImageNet) | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
# ---------------------------- | |
# Model Loading (with caching) | |
# ---------------------------- | |
_model_cache = {} | |
_current_model_id = None | |
model = None # global reference | |
def load_model_from_hub(model_id: str): | |
"""Loads a DINOv3 model from the Hugging Face Hub.""" | |
print(f"Loading model '{model_id}' from Hugging Face Hub...") | |
try: | |
token = os.environ.get("HF_TOKEN") # optional, for gated models | |
mdl = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True) | |
mdl.to(DEVICE).eval() | |
print(f"β Model '{model_id}' loaded successfully on device: {DEVICE}") | |
return mdl | |
except Exception as e: | |
print(f"β Failed to load model '{model_id}': {e}") | |
raise gr.Error( | |
f"Could not load model '{model_id}'. " | |
"If the model is gated, please accept the terms on its Hugging Face page " | |
"and set HF_TOKEN in your environment. " | |
f"Original error: {e}" | |
) | |
def get_model(model_id: str): | |
"""Return a cached model if available, otherwise load and cache it.""" | |
if model_id in _model_cache: | |
return _model_cache[model_id] | |
mdl = load_model_from_hub(model_id) | |
_model_cache[model_id] = mdl | |
return mdl | |
# Load the default model at startup | |
model = get_model(DEFAULT_MODEL_ID) | |
_current_model_id = DEFAULT_MODEL_ID | |
def _ensure_model(model_id: str): | |
"""Ensure the global 'model' matches the dropdown selection.""" | |
global model, _current_model_id | |
if model_id != _current_model_id: | |
model = get_model(model_id) | |
_current_model_id = model_id | |
# ---------------------------- | |
# Helper Functions | |
# ---------------------------- | |
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor: | |
"""Resizes an image to dimensions that are multiples of the patch size.""" | |
w, h = img.size | |
scale = long_side / max(h, w) | |
new_h = max(patch, int(round(h * scale))) | |
new_w = max(patch, int(round(w * scale))) | |
new_h = ((new_h + patch - 1) // patch) * patch | |
new_w = ((new_w + patch - 1) // patch) * patch | |
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w))) | |
def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image: | |
"""Converts a 2D numpy array to a colored PIL image.""" | |
x = data.astype(np.float32) | |
x = (x - x.min()) / (x.max() - x.min() + 1e-8) | |
cmap = colormaps.get_cmap(cmap_name) | |
rgb = (cmap(x)[..., :3] * 255).astype(np.uint8) | |
return Image.fromarray(rgb) | |
def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image: | |
"""Blends a heatmap onto a base image.""" | |
base = base.convert("RGBA") | |
heat = heat.convert("RGBA") | |
return Image.blend(base, heat, alpha=alpha) | |
# ---------------------------- | |
# Core Gradio Function | |
# ---------------------------- | |
def generate_pca_visuals( | |
image_pil: Image.Image, | |
resolution: int, | |
cmap_name: str, | |
overlay_alpha: float, | |
model_id: str, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
"""Main function to generate PCA visuals.""" | |
_ensure_model(model_id) | |
if model is None: | |
raise gr.Error("DINOv3 model is not available. Check the startup logs.") | |
if image_pil is None: | |
return None, None, "Please upload an image and click Generate.", None, None | |
# 1. Image Preprocessing | |
progress(0.2, desc="Resizing and preprocessing image...") | |
image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE) | |
t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE) | |
original_processed_image = TF.to_pil_image(image_tensor) | |
_, _, H, W = t_norm.shape | |
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE | |
# 2. Feature Extraction | |
progress(0.5, desc="π¦ Extracting features with DINOv3...") | |
outputs = model(t_norm) | |
# The model output includes a [CLS] token AND 4 register tokens. | |
n_special_tokens = 5 | |
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :] | |
# 3. PCA Calculation | |
progress(0.8, desc="π¬ Performing PCA...") | |
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True) | |
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False) | |
# Stabilize the signs of the eigenvectors for deterministic output. | |
for i in range(V.shape[1]): | |
max_abs_idx = torch.argmax(torch.abs(V[:, i])) | |
if V[max_abs_idx, i] < 0: | |
V[:, i] *= -1 | |
scores = X_centered @ V[:, :3] | |
# 4. Explained Variance | |
total_variance = (X_centered ** 2).sum() | |
explained_variance = [float((s**2) / total_variance) for s in S] | |
variance_text = ( | |
f"**π Explained Variance Ratios:**\n\n" | |
f"- **PC1:** {explained_variance[0]:.2%}\n" | |
f"- **PC2:** {explained_variance[1]:.2%}\n" | |
f"- **PC3:** {explained_variance[2]:.2%}" | |
) | |
# 5. Create Visualizations | |
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy() | |
pc1_image_raw = colorize(pc1_map, cmap_name) | |
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy() | |
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0) | |
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0) | |
pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8) | |
pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8)) | |
target_size = original_processed_image.size | |
pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC) | |
pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC) | |
blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha) | |
progress(1.0, desc="β Done!") | |
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image | |
# ---------------------------- | |
# Gradio Interface | |
# ---------------------------- | |
with gr.Blocks(theme=gr.themes.Soft(), title="π¦ DINOv3 PCA Explorer") as demo: | |
gr.Markdown( | |
""" | |
# π¦ DINOv3 PCA Explorer | |
Upload an image to visualize the principal components of its patch features. | |
This reveals the main axes of semantic variation within the image as understood by the model. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_image = gr.Image(type="pil", label="Upload Image", value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg") | |
with gr.Accordion("βοΈ Visualization Controls", open=True): | |
resolution_slider = gr.Slider( | |
minimum=224, maximum=1024, value=512, step=16, | |
label="Processing Resolution", | |
info="Higher values capture more detail but are slower." | |
) | |
model_choice = gr.Dropdown( | |
choices=AVAILABLE_MODELS, | |
value=DEFAULT_MODEL_ID, | |
label="Backbone (DINOv3)", | |
info="ViT-S/16+ is smaller & faster; ViT-H/16+ is larger.", | |
) | |
cmap_dropdown = gr.Dropdown( | |
['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'], | |
value='viridis', | |
label="Heatmap Colormap" | |
) | |
alpha_slider = gr.Slider( | |
minimum=0, maximum=1, value=0.5, | |
label="Overlay Opacity" | |
) | |
run_button = gr.Button("π Generate PCA Visuals", variant="primary") | |
with gr.Column(scale=3): | |
with gr.Tabs(): | |
with gr.TabItem("πΌοΈ Overlay"): | |
gr.Markdown("Visualize the main heatmap blended with the original image.") | |
output_blended = gr.Image(label="PC1 Heatmap Overlay") | |
output_processed = gr.Image(label="Original Processed Image (at selected resolution)") | |
with gr.TabItem("π PCA Outputs"): | |
gr.Markdown("View the raw outputs of the Principal Component Analysis.") | |
output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)") | |
output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)") | |
output_variance = gr.Markdown(label="Explained Variance") | |
run_button.click( | |
fn=generate_pca_visuals, | |
inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider, model_choice], | |
outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed] | |
) | |
if __name__ == "__main__": | |
demo.launch() |