Spaces:
Running
Running
File size: 7,826 Bytes
364c029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel
# ----------------------------
# Configuration
# ----------------------------
# The model will be downloaded from the Hugging Face Hub
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Normalization constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# ----------------------------
# Model Loading (runs once at startup)
# ----------------------------
def load_model_from_hub():
"""Loads the DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
try:
model = AutoModel.from_pretrained(MODEL_ID)
model.to(DEVICE).eval()
print(f"β
Model loaded successfully on device: {DEVICE}")
return model
except Exception as e:
print(f"β Failed to load model: {e}")
gr.Error(f"Could not load model from Hub: {e}")
return None
# Load the model globally when the app starts
model = load_model_from_hub()
# ----------------------------
# Helper Functions
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
"""Resizes an image to dimensions that are multiples of the patch size."""
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image:
"""Converts a 2D numpy array to a colored PIL image."""
x = data.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-8)
cmap = colormaps.get_cmap(cmap_name)
rgb = (cmap(x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image:
"""Blends a heatmap onto a base image."""
base = base.convert("RGBA")
heat = heat.convert("RGBA")
return Image.blend(base, heat, alpha=alpha)
# ----------------------------
# Core Gradio Function
# ----------------------------
@torch.inference_mode()
def generate_pca_visuals(
image_pil: Image.Image,
resolution: int,
cmap_name: str,
overlay_alpha: float,
progress=gr.Progress(track_tqdm=True)
):
"""Main function to generate PCA visuals."""
if model is None:
raise gr.Error("DINOv3 model could not be loaded. Check the logs.")
if image_pil is None:
return None, None, "Please upload an image and click Generate.", None, None
# 1. Image Preprocessing
progress(0.2, desc="Resizing and preprocessing image...")
image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE)
t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
original_processed_image = TF.to_pil_image(image_tensor)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
# 2. Feature Extraction
progress(0.5, desc="π¦ Extracting features with DINOv3...")
outputs = model(t_norm)
# The patch embeddings are in last_hidden_state, we skip the first token (CLS)
patch_embeddings = outputs.last_hidden_state.squeeze(0)[1:, :]
# 3. PCA Calculation
progress(0.8, desc="π¬ Performing PCA...")
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)
# Stabilize the signs of the eigenvectors for deterministic output
for i in range(V.shape[1]):
max_abs_idx = torch.argmax(torch.abs(V[:, i]))
if V[max_abs_idx, i] < 0:
V[:, i] *= -1
scores = X_centered @ V[:, :3]
# 4. Explained Variance
total_variance = (X_centered ** 2).sum()
explained_variance = [float((s**2) / total_variance) for s in S]
variance_text = (
f"**π Explained Variance Ratios:**\n\n"
f"- **PC1:** {explained_variance[0]:.2%}\n"
f"- **PC2:** {explained_variance[1]:.2%}\n"
f"- **PC3:** {explained_variance[2]:.2%}"
)
# 5. Create Visualizations
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
pc1_image_raw = colorize(pc1_map, cmap_name)
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8)
pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8))
target_size = original_processed_image.size
pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC)
pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC)
blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha)
progress(1.0, desc="β
Done!")
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image
# ----------------------------
# Gradio Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 PCA Explorer") as demo:
gr.Markdown(
"""
# π¦ DINOv3 PCA Explorer
Upload an image to visualize the principal components of its patch features.
This reveals the main axes of semantic variation within the image as understood by the model.
"""
)
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(type="pil", label="Upload Image", value="https://picsum.photos/id/1011/800/600")
with gr.Accordion("βοΈ Visualization Controls", open=True):
resolution_slider = gr.Slider(
minimum=224, maximum=1024, value=512, step=16,
label="Processing Resolution",
info="Higher values capture more detail but are slower."
)
cmap_dropdown = gr.Dropdown(
['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'],
value='viridis',
label="Heatmap Colormap"
)
alpha_slider = gr.Slider(
minimum=0, maximum=1, value=0.5,
label="Overlay Opacity"
)
run_button = gr.Button("π Generate PCA Visuals", variant="primary")
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("πΌοΈ Overlay"):
gr.Markdown("Visualize the main heatmap blended with the original image.")
output_blended = gr.Image(label="PC1 Heatmap Overlay")
output_processed = gr.Image(label="Original Processed Image (at selected resolution)")
with gr.TabItem("π PCA Outputs"):
gr.Markdown("View the raw outputs of the Principal Component Analysis.")
output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)")
output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)")
output_variance = gr.Markdown(label="Explained Variance")
run_button.click(
fn=generate_pca_visuals,
inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider],
outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed]
)
if __name__ == "__main__":
demo.launch() |