File size: 7,826 Bytes
364c029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel

# ----------------------------
# Configuration
# ----------------------------
# The model will be downloaded from the Hugging Face Hub
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m" 
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Normalization constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

# ----------------------------
# Model Loading (runs once at startup)
# ----------------------------
def load_model_from_hub():
    """Loads the DINOv3 model from the Hugging Face Hub."""
    print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
    try:
        model = AutoModel.from_pretrained(MODEL_ID)
        model.to(DEVICE).eval()
        print(f"βœ… Model loaded successfully on device: {DEVICE}")
        return model
    except Exception as e:
        print(f"❌ Failed to load model: {e}")
        gr.Error(f"Could not load model from Hub: {e}")
        return None

# Load the model globally when the app starts
model = load_model_from_hub()

# ----------------------------
# Helper Functions
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
    """Resizes an image to dimensions that are multiples of the patch size."""
    w, h = img.size
    scale = long_side / max(h, w)
    new_h = max(patch, int(round(h * scale)))
    new_w = max(patch, int(round(w * scale)))
    
    new_h = ((new_h + patch - 1) // patch) * patch
    new_w = ((new_w + patch - 1) // patch) * patch
    
    return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))

def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image:
    """Converts a 2D numpy array to a colored PIL image."""
    x = data.astype(np.float32)
    x = (x - x.min()) / (x.max() - x.min() + 1e-8)
    cmap = colormaps.get_cmap(cmap_name)
    rgb = (cmap(x)[..., :3] * 255).astype(np.uint8)
    return Image.fromarray(rgb)

def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image:
    """Blends a heatmap onto a base image."""
    base = base.convert("RGBA")
    heat = heat.convert("RGBA")
    return Image.blend(base, heat, alpha=alpha)

# ----------------------------
# Core Gradio Function
# ----------------------------
@torch.inference_mode()
def generate_pca_visuals(
    image_pil: Image.Image, 
    resolution: int, 
    cmap_name: str,
    overlay_alpha: float,
    progress=gr.Progress(track_tqdm=True)
):
    """Main function to generate PCA visuals."""
    if model is None:
        raise gr.Error("DINOv3 model could not be loaded. Check the logs.")
    if image_pil is None:
        return None, None, "Please upload an image and click Generate.", None, None

    # 1. Image Preprocessing
    progress(0.2, desc="Resizing and preprocessing image...")
    image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE)
    t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
    original_processed_image = TF.to_pil_image(image_tensor)
    _, _, H, W = t_norm.shape
    Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE

    # 2. Feature Extraction
    progress(0.5, desc="πŸ¦– Extracting features with DINOv3...")
    outputs = model(t_norm)
    # The patch embeddings are in last_hidden_state, we skip the first token (CLS)
    patch_embeddings = outputs.last_hidden_state.squeeze(0)[1:, :]
    
    # 3. PCA Calculation
    progress(0.8, desc="πŸ”¬ Performing PCA...")
    X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
    U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)

    # Stabilize the signs of the eigenvectors for deterministic output
    for i in range(V.shape[1]):
        max_abs_idx = torch.argmax(torch.abs(V[:, i]))
        if V[max_abs_idx, i] < 0:
            V[:, i] *= -1

    scores = X_centered @ V[:, :3]

    # 4. Explained Variance
    total_variance = (X_centered ** 2).sum()
    explained_variance = [float((s**2) / total_variance) for s in S]
    variance_text = (
        f"**πŸ“Š Explained Variance Ratios:**\n\n"
        f"- **PC1:** {explained_variance[0]:.2%}\n"
        f"- **PC2:** {explained_variance[1]:.2%}\n"
        f"- **PC3:** {explained_variance[2]:.2%}"
    )

    # 5. Create Visualizations
    pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
    pc1_image_raw = colorize(pc1_map, cmap_name)
    pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
    min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
    max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
    pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8)
    pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8))
    
    target_size = original_processed_image.size
    pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC)
    pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC)
    blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha)

    progress(1.0, desc="βœ… Done!")
    return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image


# ----------------------------
# Gradio Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 PCA Explorer") as demo:
    gr.Markdown(
        """
        # πŸ¦– DINOv3 PCA Explorer
        Upload an image to visualize the principal components of its patch features. 
        This reveals the main axes of semantic variation within the image as understood by the model.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=2):
            input_image = gr.Image(type="pil", label="Upload Image", value="https://picsum.photos/id/1011/800/600")
            
            with gr.Accordion("βš™οΈ Visualization Controls", open=True):
                resolution_slider = gr.Slider(
                    minimum=224, maximum=1024, value=512, step=16, 
                    label="Processing Resolution",
                    info="Higher values capture more detail but are slower."
                )
                cmap_dropdown = gr.Dropdown(
                    ['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'], 
                    value='viridis', 
                    label="Heatmap Colormap"
                )
                alpha_slider = gr.Slider(
                    minimum=0, maximum=1, value=0.5,
                    label="Overlay Opacity"
                )
            
            run_button = gr.Button("πŸš€ Generate PCA Visuals", variant="primary")
        
        with gr.Column(scale=3):
            with gr.Tabs():
                with gr.TabItem("πŸ–ΌοΈ Overlay"):
                    gr.Markdown("Visualize the main heatmap blended with the original image.")
                    output_blended = gr.Image(label="PC1 Heatmap Overlay")
                    output_processed = gr.Image(label="Original Processed Image (at selected resolution)")
                with gr.TabItem("πŸ“Š PCA Outputs"):
                    gr.Markdown("View the raw outputs of the Principal Component Analysis.")
                    output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)")
                    output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)")
                    output_variance = gr.Markdown(label="Explained Variance")

    run_button.click(
        fn=generate_pca_visuals,
        inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider],
        outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed]
    )

if __name__ == "__main__":
    demo.launch()