Spaces:
Running
Running
File size: 8,968 Bytes
471a3ca 364c029 471a3ca 364c029 e8fc9bd 364c029 471a3ca 364c029 e8fc9bd 471a3ca e8fc9bd 471a3ca 364c029 e8fc9bd 364c029 471a3ca 364c029 471a3ca e8fc9bd 471a3ca 364c029 471a3ca 364c029 471a3ca 364c029 471a3ca 364c029 50e62a7 364c029 02eb176 364c029 471a3ca 364c029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# app.py
import torch
import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
from matplotlib import colormaps
from transformers import AutoModel
import os
# ----------------------------
# Configuration
# ----------------------------
# π‘ FIX: Use the full, correct model ID from the Hugging Face Hub.
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
PATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Normalization constants (standard for ImageNet)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# ----------------------------
# Model Loading (runs once at startup)
# ----------------------------
def load_model_from_hub():
"""Loads the DINOv3 model from the Hugging Face Hub."""
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
try:
# This will use the HF_TOKEN secret if you set it in your Space settings.
token = os.environ.get("HF_TOKEN")
# trust_remote_code is necessary for DINOv3
model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
model.to(DEVICE).eval()
print(f"β
Model loaded successfully on device: {DEVICE}")
return model
except Exception as e:
print(f"β Failed to load model: {e}")
# This will display a clear error message in the Gradio interface
raise gr.Error(
f"Could not load model '{MODEL_ID}'. "
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
"and set your HF_TOKEN as a secret in your Space settings. "
f"Original error: {e}"
)
# Load the model globally when the app starts
model = load_model_from_hub()
# ----------------------------
# Helper Functions
# ----------------------------
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
"""Resizes an image to dimensions that are multiples of the patch size."""
w, h = img.size
scale = long_side / max(h, w)
new_h = max(patch, int(round(h * scale)))
new_w = max(patch, int(round(w * scale)))
new_h = ((new_h + patch - 1) // patch) * patch
new_w = ((new_w + patch - 1) // patch) * patch
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image:
"""Converts a 2D numpy array to a colored PIL image."""
x = data.astype(np.float32)
x = (x - x.min()) / (x.max() - x.min() + 1e-8)
cmap = colormaps.get_cmap(cmap_name)
rgb = (cmap(x)[..., :3] * 255).astype(np.uint8)
return Image.fromarray(rgb)
def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image:
"""Blends a heatmap onto a base image."""
base = base.convert("RGBA")
heat = heat.convert("RGBA")
return Image.blend(base, heat, alpha=alpha)
# ----------------------------
# Core Gradio Function
# ----------------------------
@torch.inference_mode()
def generate_pca_visuals(
image_pil: Image.Image,
resolution: int,
cmap_name: str,
overlay_alpha: float,
progress=gr.Progress(track_tqdm=True)
):
"""Main function to generate PCA visuals."""
if model is None:
raise gr.Error("DINOv3 model is not available. Check the startup logs.")
if image_pil is None:
return None, None, "Please upload an image and click Generate.", None, None
# 1. Image Preprocessing
progress(0.2, desc="Resizing and preprocessing image...")
image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE)
t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
original_processed_image = TF.to_pil_image(image_tensor)
_, _, H, W = t_norm.shape
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
# 2. Feature Extraction
progress(0.5, desc="π¦ Extracting features with DINOv3...")
outputs = model(t_norm)
# π‘ FIX: The model output includes a [CLS] token AND 4 register tokens.
# We must skip all of them (total 5) to get only the patch embeddings.
n_special_tokens = 5 # 1 [CLS] token + 4 register tokens for ViT-H/16+
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
# 3. PCA Calculation
progress(0.8, desc="π¬ Performing PCA...")
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)
# π‘ IMPROVEMENT: Stabilize the signs of the eigenvectors for deterministic output.
# This prevents the colors from randomly inverting on different runs.
for i in range(V.shape[1]):
max_abs_idx = torch.argmax(torch.abs(V[:, i]))
if V[max_abs_idx, i] < 0:
V[:, i] *= -1
scores = X_centered @ V[:, :3]
# 4. Explained Variance
total_variance = (X_centered ** 2).sum()
explained_variance = [float((s**2) / total_variance) for s in S]
variance_text = (
f"**π Explained Variance Ratios:**\n\n"
f"- **PC1:** {explained_variance[0]:.2%}\n"
f"- **PC2:** {explained_variance[1]:.2%}\n"
f"- **PC3:** {explained_variance[2]:.2%}"
)
# 5. Create Visualizations
# This part should now work correctly as `scores` has the right shape (Hp*Wp, 3)
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
pc1_image_raw = colorize(pc1_map, cmap_name)
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8)
pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8))
target_size = original_processed_image.size
pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC)
pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC)
blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha)
progress(1.0, desc="β
Done!")
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image
# ----------------------------
# Gradio Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="Running on CPU so please wait π¦ DINOv3 PCA Explorer") as demo:
gr.Markdown(
"""
#Running on CPU so please wait π¦ DINOv3 PCA Explorer
Upload an image to visualize the principal components of its patch features.
This reveals the main axes of semantic variation within the image as understood by the model.
"""
)
with gr.Row():
with gr.Column(scale=2):
# Added a default image URL for convenience
input_image = gr.Image(type="pil", label="Upload Image", value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg")
with gr.Accordion("βοΈ Visualization Controls", open=True):
resolution_slider = gr.Slider(
minimum=224, maximum=1024, value=512, step=16,
label="Processing Resolution",
info="Higher values capture more detail but are slower."
)
cmap_dropdown = gr.Dropdown(
['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'],
value='viridis',
label="Heatmap Colormap"
)
alpha_slider = gr.Slider(
minimum=0, maximum=1, value=0.5,
label="Overlay Opacity"
)
run_button = gr.Button("π Generate PCA Visuals", variant="primary")
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("πΌοΈ Overlay"):
gr.Markdown("Visualize the main heatmap blended with the original image.")
output_blended = gr.Image(label="PC1 Heatmap Overlay")
output_processed = gr.Image(label="Original Processed Image (at selected resolution)")
with gr.TabItem("π PCA Outputs"):
gr.Markdown("View the raw outputs of the Principal Component Analysis.")
output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)")
output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)")
output_variance = gr.Markdown(label="Explained Variance")
run_button.click(
fn=generate_pca_visuals,
inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider],
outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed]
)
if __name__ == "__main__":
demo.launch() |