sayedM commited on
Commit
db11337
·
1 Parent(s): 6f24db4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import time
4
+ import os
5
+
6
+
7
+ from PIL import Image
8
+
9
+
10
+ import gradio as gr
11
+
12
+ ch_detection_model1 = cv2.dnn.readNet('tumor_classifier_mixed_datasets.onnx')
13
+
14
+ def main_func(im):
15
+ im=cv2.resize(im,(224,224))
16
+ im=cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
17
+ im = (im.astype(np.float32)) / 255.0
18
+ im=im[np.newaxis, ...]
19
+ #print(im.shape)
20
+ ch_detection_model1.setInput(im)
21
+
22
+ outputs=ch_detection_model1.forward(ch_detection_model1.getUnconnectedOutLayersNames())
23
+ outputs=np.array(outputs)
24
+ outputs=outputs.reshape(-1)
25
+ if outputs[0]>0.49:
26
+ results=("predicted as Tumor with probability :"+str(outputs[0]))
27
+ return results
28
+ if outputs[0]<0.50:
29
+ results=("There is No-Tumor with probability :"+str(1-outputs[0]))
30
+ return results
31
+
32
+
33
+
34
+ def final_func():
35
+ gr.Interface(fn=main_func,
36
+ inputs=gr.Image(),
37
+ outputs='text').launch()
38
+
39
+ if __name__ == "__main__":
40
+ final_func()
41
+
42
+