Hot-or-Not / app.py
sayantan47's picture
Create app.py
da6ac83 verified
raw
history blame
7.61 kB
import os
import sys
import traceback
import numpy as np
import onnxruntime as ort
from huggingface_hub import hf_hub_download
from transformers import CLIPProcessor
from PIL import Image
import gradio as gr
# ============================================================
# Config
# ============================================================
REPO_ID = "sayantan47/clip-vit-b32-onnx" # <-- change this
MODEL_FILENAME = "onnx/model_q4.onnx"
PROVIDERS = ["CPUExecutionProvider"] # keep CPU to avoid CUDA DLL issues
DEFAULT_OUTPUT = (0.0, 0.0, 0.0, 0.0, "unknown", "unknown")
FIXED_IMG_W = 300
FIXED_IMG_H = 300
# ============================================================
# Utils
# ============================================================
def _print_exc(prefix: str):
print(prefix, file=sys.stderr)
traceback.print_exc()
def _softmax_safe(x: np.ndarray, axis: int = -1) -> np.ndarray:
try:
x = x - np.max(x, axis=axis, keepdims=True)
ex = np.exp(x)
denom = np.sum(ex, axis=axis, keepdims=True)
denom = np.where(denom == 0, 1.0, denom)
return ex / denom
except Exception:
_print_exc("[_softmax_safe] failed")
return np.ones_like(x) / x.shape[-1]
def _ensure_int64(feed_dict):
out = {}
for k, v in feed_dict.items():
if isinstance(v, np.ndarray) and v.dtype == np.int32:
out[k] = v.astype(np.int64)
else:
out[k] = v
return out
def _dummy_image(width=FIXED_IMG_W, height=FIXED_IMG_H):
return Image.fromarray(np.full((height, width, 3), 127, dtype=np.uint8), "RGB")
# ============================================================
# Load from HF Hub
# ============================================================
def load_from_hub():
# download model.onnx
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=MODEL_FILENAME,
local_dir="hf_cache",
local_dir_use_symlinks=False,
resume_download=True,
)
# load processor (tokenizer + preproc files) from the same repo
proc = CLIPProcessor.from_pretrained(REPO_ID)
sess = ort.InferenceSession(model_path, providers=PROVIDERS)
return proc, sess
try:
processor, session = load_from_hub()
except Exception:
_print_exc("[GLOBAL INIT] Failed to download/load model from HF Hub.")
processor, session = None, None
# ============================================================
# Core helpers
# ============================================================
def _run_clip(image_pil: Image.Image, texts):
if processor is None or session is None:
return None
try:
inputs = processor(
text=texts, images=image_pil, return_tensors="np", padding=True
)
ort_inputs = _ensure_int64(inputs)
outputs = session.run(None, ort_inputs)
logits_per_image = outputs[0] # (1, n_texts)
probs = _softmax_safe(logits_per_image, axis=-1)[0]
return probs
except Exception:
_print_exc("[_run_clip] Inference failed")
return None
def detect_gender(image_pil: Image.Image) -> str:
texts = ["a man", "a woman"]
probs = _run_clip(image_pil, texts)
if probs is None:
return "unknown"
return "man" if int(np.argmax(probs)) == 0 else "woman"
def detect_age_group(image_pil: Image.Image) -> str:
texts = ["a young person", "a middle-aged person", "an old person"]
probs = _run_clip(image_pil, texts)
if probs is None:
return "unknown"
return ["young", "middle-aged", "old"][int(np.argmax(probs))]
def score_with_terms(image_pil: Image.Image, positive_terms, negative_terms):
probs_all = []
for pos, neg in zip(positive_terms, negative_terms):
probs = _run_clip(image_pil, [pos, neg])
if probs is None or len(probs) != 2:
return (
DEFAULT_OUTPUT[0],
DEFAULT_OUTPUT[1],
DEFAULT_OUTPUT[2],
DEFAULT_OUTPUT[3],
)
probs_all.append(probs)
positive_probs = [p[0] for p in probs_all]
negative_probs = [p[1] for p in probs_all]
s1 = round((probs_all[0][0] - probs_all[0][1] + 1) * 50, 2)
s2 = round((probs_all[1][0] - probs_all[1][1] + 1) * 50, 2)
s3 = round((probs_all[2][0] - probs_all[2][1] + 1) * 50, 2)
hot_score = float(np.mean(positive_probs))
ugly_score = float(np.mean(negative_probs))
composite = round(((hot_score - ugly_score) + 1) * 50, 2)
return composite, s1, s2, s3
# ============================================================
# Gradio callback
# ============================================================
def hotornot(image):
if processor is None or session is None:
return DEFAULT_OUTPUT
if image is None:
image_pil = _dummy_image()
else:
try:
image_pil = Image.fromarray(image.astype("uint8"), "RGB")
except Exception:
_print_exc("[hotornot] Failed to convert input to PIL. Using dummy image.")
image_pil = _dummy_image()
try:
gender = detect_gender(image_pil)
age_group = detect_age_group(image_pil)
if gender == "man":
positive_terms = ["a handsome man", "a charming man", "an attractive man"]
negative_terms = ["an ugly man", "a gross man", "a hideous man"]
elif gender == "woman":
positive_terms = [
"a beautiful woman",
"a cute woman",
"an attractive woman",
]
negative_terms = ["an ugly woman", "a gross woman", "a hideous woman"]
else:
positive_terms = [
"a hot person",
"a beautiful person",
"an attractive person",
]
negative_terms = ["an ugly person", "a gross person", "a hideous person"]
composite, hotness, second, attractiveness = score_with_terms(
image_pil, positive_terms, negative_terms
)
return composite, hotness, second, attractiveness, gender, age_group
except Exception:
_print_exc("[hotornot] Unexpected error")
return DEFAULT_OUTPUT
# ============================================================
# UI
# ============================================================
CSS = f"""
#fixed_img_component img,
#fixed_img_component canvas {{
width: {FIXED_IMG_W}px !important;
height: {FIXED_IMG_H}px !important;
object-fit: contain !important;
}}
"""
with gr.Blocks(css=CSS) as demo:
gr.Markdown("# Hot or Not (CLIP ONNX from Hugging Face Hub)")
gr.Markdown(
"Loads ONNX + tokenizer from HF Hub, runs on CPU, auto-detects gender & age, and scores appearance."
)
with gr.Row():
image_in = gr.Image(
label="Upload Image",
type="numpy",
image_mode="RGB",
height=FIXED_IMG_H,
width=FIXED_IMG_W,
elem_id="fixed_img_component",
)
with gr.Row():
out_total = gr.Textbox(label="Total Hot or Not™ Score")
out_hot = gr.Textbox(label="Hotness Score")
out_mid = gr.Textbox(label="Charm / Cuteness Score")
out_attr = gr.Textbox(label="Attractiveness Score")
out_gender = gr.Textbox(label="Predicted Gender")
out_age = gr.Textbox(label="Predicted Age Group")
run_btn = gr.Button("Rate")
run_btn.click(
fn=hotornot,
inputs=[image_in],
outputs=[out_total, out_hot, out_mid, out_attr, out_gender, out_age],
)
if __name__ == "__main__":
demo.launch()