Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,46 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
inputs=[
|
| 7 |
-
gr.
|
| 8 |
-
gr.
|
| 9 |
-
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.7, label="Temperature")
|
| 10 |
],
|
| 11 |
-
outputs=gr.
|
| 12 |
-
title="
|
| 13 |
-
description="
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# **1. Load a better QA model** – using RoBERTa-large for higher accuracy.
|
| 5 |
+
# (You can switch to 'deepset/roberta-base-squad2-distilled' for speed or others as needed.)
|
| 6 |
+
MODEL_NAME = "deepset/roberta-large-squad2"
|
| 7 |
+
qa_pipeline = pipeline(
|
| 8 |
+
"question-answering",
|
| 9 |
+
model=MODEL_NAME,
|
| 10 |
+
tokenizer=MODEL_NAME
|
| 11 |
+
# You can add device=0 here if using a GPU for faster inference
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
# Define the QA function for Gradio
|
| 15 |
+
def answer_question(question, context):
|
| 16 |
+
# **2. Use the pipeline with improved parameters**
|
| 17 |
+
result = qa_pipeline(
|
| 18 |
+
question=question,
|
| 19 |
+
context=context,
|
| 20 |
+
handle_impossible_answer=True, # allow "no answer" if applicable
|
| 21 |
+
top_k=1, # we only want the best answer
|
| 22 |
+
max_answer_len=30 # increase if expecting longer answers
|
| 23 |
+
)
|
| 24 |
+
answer = result.get("answer", "").strip()
|
| 25 |
+
score = result.get("score", 0.0)
|
| 26 |
+
# **3. Handle cases where no answer is found or confidence is low**
|
| 27 |
+
if answer == "" or score < 0.1:
|
| 28 |
+
# If the model found no answer or is very unsure, return a fallback message
|
| 29 |
+
return "🤔 I’m not sure – the model couldn’t find a clear answer in the text."
|
| 30 |
+
return answer
|
| 31 |
+
|
| 32 |
+
# **4. Set up Gradio interface** with appropriate input/output components
|
| 33 |
+
interface = gr.Interface(
|
| 34 |
+
fn=answer_question,
|
| 35 |
inputs=[
|
| 36 |
+
gr.components.Textbox(lines=2, label="Question"),
|
| 37 |
+
gr.components.Textbox(lines=10, label="Context")
|
|
|
|
| 38 |
],
|
| 39 |
+
outputs=gr.components.Textbox(label="Answer"),
|
| 40 |
+
title="Question Answering Demo",
|
| 41 |
+
description="Ask a question and get an answer from the provided context. " \
|
| 42 |
+
"Supports unanswerable questions."
|
| 43 |
)
|
| 44 |
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
interface.launch()
|