Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load pre-trained models
|
5 |
+
model_small_name = "microsoft/DialoGPT-small"
|
6 |
+
model_large_name = "microsoft/DialoGPT-medium"
|
7 |
+
|
8 |
+
tokenizer_small = AutoTokenizer.from_pretrained(model_small_name)
|
9 |
+
model_small = AutoModelForCausalLM.from_pretrained(model_small_name)
|
10 |
+
|
11 |
+
tokenizer_large = AutoTokenizer.from_pretrained(model_large_name)
|
12 |
+
model_large = AutoModelForCausalLM.from_pretrained(model_large_name)
|
13 |
+
|
14 |
+
# Function to generate responses
|
15 |
+
def generate_response(input_text, model, tokenizer):
|
16 |
+
inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
|
17 |
+
outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3)
|
18 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
st.title("Mental Health Chatbot")
|
22 |
+
|
23 |
+
# User input
|
24 |
+
user_input = st.text_input("You:", "")
|
25 |
+
|
26 |
+
if user_input:
|
27 |
+
# Generate responses for both models
|
28 |
+
response_small = generate_response(user_input, model_small, tokenizer_small)
|
29 |
+
response_large = generate_response(user_input, model_large, tokenizer_large)
|
30 |
+
|
31 |
+
# Display responses
|
32 |
+
st.subheader("DialoGPT-small Response:")
|
33 |
+
st.write(response_small)
|
34 |
+
|
35 |
+
st.subheader("DialoGPT-medium Response:")
|
36 |
+
st.write(response_large)
|