sauvivek commited on
Commit
1e0a03c
·
verified ·
1 Parent(s): f160ddc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load pre-trained models
5
+ model_small_name = "microsoft/DialoGPT-small"
6
+ model_large_name = "microsoft/DialoGPT-medium"
7
+
8
+ tokenizer_small = AutoTokenizer.from_pretrained(model_small_name)
9
+ model_small = AutoModelForCausalLM.from_pretrained(model_small_name)
10
+
11
+ tokenizer_large = AutoTokenizer.from_pretrained(model_large_name)
12
+ model_large = AutoModelForCausalLM.from_pretrained(model_large_name)
13
+
14
+ # Function to generate responses
15
+ def generate_response(input_text, model, tokenizer):
16
+ inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
17
+ outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3)
18
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
19
+
20
+ # Streamlit app
21
+ st.title("Mental Health Chatbot")
22
+
23
+ # User input
24
+ user_input = st.text_input("You:", "")
25
+
26
+ if user_input:
27
+ # Generate responses for both models
28
+ response_small = generate_response(user_input, model_small, tokenizer_small)
29
+ response_large = generate_response(user_input, model_large, tokenizer_large)
30
+
31
+ # Display responses
32
+ st.subheader("DialoGPT-small Response:")
33
+ st.write(response_small)
34
+
35
+ st.subheader("DialoGPT-medium Response:")
36
+ st.write(response_large)