import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForImageClassification, CLIPVisionModel import torch from PIL import Image import json import numpy as np # Load pre-trained model and feature extractor model_name = "mrsarthakgupta/openclipvisionmodel" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) model = CLIPVisionModel.from_pretrained(model_name) matrix = torch.Tensor(np.array(json.load(open('linear_params.json', 'r'))["0"])) def classify_image(image): # Preprocess the image inputs = feature_extractor(images=image, return_tensors="pt") # Make prediction with torch.no_grad(): outputs = model(**inputs) results = torch.matmul(outputs.pooler_output.squeeze(), matrix.squeeze()) return {'Our confidence of this image being AI generated': torch.nn.functional.sigmoid(results + torch.Tensor([0.9791784]))} # Create Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=1), title="Detect AI generated image", description="Upload an image to find the probability of it being AI generated. While we're certainly not perfect, but we're working really hard to get a more accurate classifier!" ) # Launch the app iface.launch()