Spaces:
Sleeping
Sleeping
Preparing submission
Browse files- tasks/image.py +3 -12
tasks/image.py
CHANGED
@@ -107,27 +107,18 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
107 |
|
108 |
# Load model
|
109 |
model_path = Path("tasks", "models")
|
110 |
-
# If CUDA is available, load FP16 pytorch
|
111 |
-
# if is_available():
|
112 |
-
# print("CUDA available, loading FP16 pytorch model")
|
113 |
model_name = "pruned_fp16.pt"
|
|
|
114 |
model = YOLO(Path(model_path, model_name), task="detect")
|
115 |
-
# device_name = device("cuda")
|
116 |
device_name = device("cuda" if is_available() else "cpu")
|
117 |
IMGSIZE = 1280
|
118 |
-
# # If not, load FP16 ONNX model
|
119 |
-
# else:
|
120 |
-
# print("CUDA not, available, loading ONNX model")
|
121 |
-
# model_name = "640_fp16_cpu.onnx"
|
122 |
-
# model = YOLO(Path(model_path, model_name), task="detect")
|
123 |
-
# device_name = device("cpu")
|
124 |
-
# IMGSIZE = 640 # required to make CPU inference a bit fast
|
125 |
|
126 |
predictions = []
|
127 |
true_labels = []
|
128 |
pred_boxes = []
|
129 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
130 |
|
|
|
131 |
for example in test_dataset:
|
132 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
133 |
annotation = example.get("annotations", "").strip()
|
@@ -135,7 +126,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
135 |
true_labels.append(int(has_smoke))
|
136 |
|
137 |
# Make prediction
|
138 |
-
results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=
|
139 |
pred_has_smoke = len(results) > 0
|
140 |
predictions.append(int(pred_has_smoke))
|
141 |
|
|
|
107 |
|
108 |
# Load model
|
109 |
model_path = Path("tasks", "models")
|
|
|
|
|
|
|
110 |
model_name = "pruned_fp16.pt"
|
111 |
+
print(f"Loading model {model_name}")
|
112 |
model = YOLO(Path(model_path, model_name), task="detect")
|
|
|
113 |
device_name = device("cuda" if is_available() else "cpu")
|
114 |
IMGSIZE = 1280
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
predictions = []
|
117 |
true_labels = []
|
118 |
pred_boxes = []
|
119 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
120 |
|
121 |
+
print(f"Inference start on device: {device_name}")
|
122 |
for example in test_dataset:
|
123 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
124 |
annotation = example.get("annotations", "").strip()
|
|
|
126 |
true_labels.append(int(has_smoke))
|
127 |
|
128 |
# Make prediction
|
129 |
+
results = model.predict(example["image"], device=device_name, conf=THRESHOLD, verbose=True, imgsz=IMGSIZE)[0]
|
130 |
pred_has_smoke = len(results) > 0
|
131 |
predictions.append(int(pred_has_smoke))
|
132 |
|