|
import librosa.display as lbd |
|
import matplotlib.pyplot as plt |
|
import soundfile |
|
import torch |
|
|
|
from .InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2 |
|
from .InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator |
|
from ..Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend |
|
from ..Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id |
|
|
|
|
|
class AnonFastSpeech2(torch.nn.Module): |
|
|
|
def __init__(self, device: str, path_to_hifigan_model: str, path_to_fastspeech_model: str): |
|
""" |
|
Args: |
|
device: Device to run on. CPU is feasible, still faster than real-time, but a GPU is significantly faster. |
|
path_to_hifigan_model: Path to the vocoder model, including filename and suffix. |
|
path_to_fastspeech_model: Path to the synthesis model, including filename and suffix. |
|
|
|
""" |
|
super().__init__() |
|
language = "en" |
|
self.device = device |
|
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True) |
|
checkpoint = torch.load(path_to_fastspeech_model, map_location='cpu') |
|
self.phone2mel = FastSpeech2(weights=checkpoint["model"], lang_embs=None).to(torch.device(device)) |
|
self.mel2wav = HiFiGANGenerator(path_to_weights=path_to_hifigan_model).to(torch.device(device)) |
|
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device) |
|
self.phone2mel.eval() |
|
self.mel2wav.eval() |
|
self.lang_id = get_language_id(language) |
|
self.to(torch.device(device)) |
|
|
|
def forward(self, text, view=False, text_is_phonemes=False): |
|
""" |
|
Args: |
|
text: The text that the TTS should convert to speech |
|
view: Boolean flag whether to produce and display a graphic showing the generated audio |
|
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) |
|
|
|
Returns: |
|
48kHz waveform as 1d tensor |
|
|
|
""" |
|
with torch.no_grad(): |
|
phones = self.text2phone.string_to_tensor(text, input_phonemes=text_is_phonemes).to(torch.device(self.device)) |
|
mel, durations, pitch, energy = self.phone2mel(phones, |
|
return_duration_pitch_energy=True, |
|
utterance_embedding=self.default_utterance_embedding) |
|
mel = mel.transpose(0, 1) |
|
wave = self.mel2wav(mel) |
|
if view: |
|
from Utility.utils import cumsum_durations |
|
fig, ax = plt.subplots(nrows=2, ncols=1) |
|
ax[0].plot(wave.cpu().numpy()) |
|
lbd.specshow(mel.cpu().numpy(), |
|
ax=ax[1], |
|
sr=16000, |
|
cmap='GnBu', |
|
y_axis='mel', |
|
x_axis=None, |
|
hop_length=256) |
|
ax[0].yaxis.set_visible(False) |
|
ax[1].yaxis.set_visible(False) |
|
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy()) |
|
ax[1].set_xticks(duration_splits, minor=True) |
|
ax[1].xaxis.grid(True, which='minor') |
|
ax[1].set_xticks(label_positions, minor=False) |
|
ax[1].set_xticklabels(self.text2phone.get_phone_string(text)) |
|
ax[0].set_title(text) |
|
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0) |
|
plt.show() |
|
return wave |
|
|
|
def anonymize_to_file(self, text: str, text_is_phonemes: bool, target_speaker_embedding: torch.tensor, path_to_result_file: str): |
|
""" |
|
Args: |
|
text: The text that the TTS should convert to speech |
|
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False) |
|
target_speaker_embedding: The speaker embedding that should be used for the produced speech |
|
path_to_result_file: The path to the location where the resulting speech should be saved (including the filename and .wav suffix) |
|
|
|
""" |
|
|
|
assert text.strip() != "" |
|
assert path_to_result_file.endswith(".wav") |
|
|
|
self.default_utterance_embedding = target_speaker_embedding.to(self.device) |
|
wav = self(text=text, text_is_phonemes=text_is_phonemes) |
|
soundfile.write(file=path_to_result_file, data=wav.cpu().numpy(), samplerate=48000) |
|
|