|
""" |
|
Taken from ESPNet |
|
""" |
|
|
|
import torch |
|
from torch.functional import stft as torch_stft |
|
from torch_complex.tensor import ComplexTensor |
|
|
|
from ..Utility.utils import make_pad_mask |
|
|
|
|
|
class STFT(torch.nn.Module): |
|
|
|
def __init__(self, n_fft=512, win_length=None, hop_length=128, window="hann", center=True, normalized=False, |
|
onesided=True): |
|
super().__init__() |
|
self.n_fft = n_fft |
|
if win_length is None: |
|
self.win_length = n_fft |
|
else: |
|
self.win_length = win_length |
|
self.hop_length = hop_length |
|
self.center = center |
|
self.normalized = normalized |
|
self.onesided = onesided |
|
self.window = window |
|
|
|
def extra_repr(self): |
|
return (f"n_fft={self.n_fft}, " |
|
f"win_length={self.win_length}, " |
|
f"hop_length={self.hop_length}, " |
|
f"center={self.center}, " |
|
f"normalized={self.normalized}, " |
|
f"onesided={self.onesided}") |
|
|
|
def forward(self, input_wave, ilens=None): |
|
""" |
|
STFT forward function. |
|
Args: |
|
input_wave: (Batch, Nsamples) or (Batch, Nsample, Channels) |
|
ilens: (Batch) |
|
Returns: |
|
output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) |
|
""" |
|
bs = input_wave.size(0) |
|
|
|
if input_wave.dim() == 3: |
|
multi_channel = True |
|
|
|
input_wave = input_wave.transpose(1, 2).reshape(-1, input_wave.size(1)) |
|
else: |
|
multi_channel = False |
|
|
|
|
|
|
|
if self.window is not None: |
|
window_func = getattr(torch, f"{self.window}_window") |
|
window = window_func(self.win_length, dtype=input_wave.dtype, device=input_wave.device) |
|
else: |
|
window = None |
|
|
|
complex_output = torch_stft(input=input_wave, |
|
n_fft=self.n_fft, |
|
win_length=self.win_length, |
|
hop_length=self.hop_length, |
|
center=self.center, |
|
window=window, |
|
normalized=self.normalized, |
|
onesided=self.onesided, |
|
return_complex=True) |
|
output = torch.view_as_real(complex_output) |
|
|
|
|
|
output = output.transpose(1, 2) |
|
if multi_channel: |
|
|
|
|
|
output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(1, 2) |
|
|
|
if ilens is not None: |
|
if self.center: |
|
pad = self.win_length // 2 |
|
ilens = ilens + 2 * pad |
|
|
|
olens = (ilens - self.win_length) // self.hop_length + 1 |
|
output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) |
|
else: |
|
olens = None |
|
|
|
return output, olens |
|
|
|
def inverse(self, input, ilens=None): |
|
""" |
|
Inverse STFT. |
|
Args: |
|
input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F) |
|
ilens: (batch,) |
|
Returns: |
|
wavs: (batch, samples) |
|
ilens: (batch,) |
|
""" |
|
istft = torch.functional.istft |
|
|
|
if self.window is not None: |
|
window_func = getattr(torch, f"{self.window}_window") |
|
window = window_func(self.win_length, dtype=input.dtype, device=input.device) |
|
else: |
|
window = None |
|
|
|
if isinstance(input, ComplexTensor): |
|
input = torch.stack([input.real, input.imag], dim=-1) |
|
assert input.shape[-1] == 2 |
|
input = input.transpose(1, 2) |
|
|
|
wavs = istft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=window, center=self.center, |
|
normalized=self.normalized, onesided=self.onesided, length=ilens.max() if ilens is not None else ilens) |
|
|
|
return wavs, ilens |
|
|