|
|
|
|
|
|
|
|
|
from abc import ABC |
|
|
|
import torch |
|
|
|
from ..Utility.utils import pad_list |
|
|
|
|
|
class LengthRegulator(torch.nn.Module, ABC): |
|
""" |
|
Length regulator module for feed-forward Transformer. |
|
|
|
This is a module of length regulator described in |
|
`FastSpeech: Fast, Robust and Controllable Text to Speech`_. |
|
The length regulator expands char or |
|
phoneme-level embedding features to frame-level by repeating each |
|
feature based on the corresponding predicted durations. |
|
|
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: |
|
https://arxiv.org/pdf/1905.09263.pdf |
|
|
|
""" |
|
|
|
def __init__(self, pad_value=0.0): |
|
""" |
|
Initialize length regulator module. |
|
|
|
Args: |
|
pad_value (float, optional): Value used for padding. |
|
""" |
|
super(LengthRegulator, self).__init__() |
|
self.pad_value = pad_value |
|
|
|
def forward(self, xs, ds, alpha=1.0): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D). |
|
ds (LongTensor): Batch of durations of each frame (B, T). |
|
alpha (float, optional): Alpha value to control speed of speech. |
|
|
|
Returns: |
|
Tensor: replicated input tensor based on durations (B, T*, D). |
|
""" |
|
if alpha != 1.0: |
|
assert alpha > 0 |
|
ds = torch.round(ds.float() * alpha).long() |
|
|
|
if ds.sum() == 0: |
|
ds[ds.sum(dim=1).eq(0)] = 1 |
|
|
|
return pad_list([self._repeat_one_sequence(x, d) for x, d in zip(xs, ds)], self.pad_value) |
|
|
|
def _repeat_one_sequence(self, x, d): |
|
""" |
|
Repeat each frame according to duration |
|
""" |
|
return torch.repeat_interleave(x, d, dim=0) |
|
|