|
|
|
|
|
|
|
|
|
"""Multi-Head Attention layer definition.""" |
|
|
|
import math |
|
|
|
import numpy |
|
import torch |
|
from torch import nn |
|
|
|
from ..Utility.utils import make_non_pad_mask |
|
|
|
|
|
class MultiHeadedAttention(nn.Module): |
|
""" |
|
Multi-Head Attention layer. |
|
|
|
Args: |
|
n_head (int): The number of heads. |
|
n_feat (int): The number of features. |
|
dropout_rate (float): Dropout rate. |
|
""" |
|
|
|
def __init__(self, n_head, n_feat, dropout_rate): |
|
""" |
|
Construct an MultiHeadedAttention object. |
|
""" |
|
super(MultiHeadedAttention, self).__init__() |
|
assert n_feat % n_head == 0 |
|
|
|
self.d_k = n_feat // n_head |
|
self.h = n_head |
|
self.linear_q = nn.Linear(n_feat, n_feat) |
|
self.linear_k = nn.Linear(n_feat, n_feat) |
|
self.linear_v = nn.Linear(n_feat, n_feat) |
|
self.linear_out = nn.Linear(n_feat, n_feat) |
|
self.attn = None |
|
self.dropout = nn.Dropout(p=dropout_rate) |
|
|
|
def forward_qkv(self, query, key, value): |
|
""" |
|
Transform query, key and value. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
|
Returns: |
|
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). |
|
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). |
|
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). |
|
""" |
|
n_batch = query.size(0) |
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) |
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) |
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) |
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
|
|
return q, k, v |
|
|
|
def forward_attention(self, value, scores, mask): |
|
""" |
|
Compute attention context vector. |
|
|
|
Args: |
|
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). |
|
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). |
|
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). |
|
|
|
Returns: |
|
torch.Tensor: Transformed value (#batch, time1, d_model) |
|
weighted by the attention score (#batch, time1, time2). |
|
""" |
|
n_batch = value.size(0) |
|
if mask is not None: |
|
mask = mask.unsqueeze(1).eq(0) |
|
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min) |
|
scores = scores.masked_fill(mask, min_value) |
|
self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) |
|
else: |
|
self.attn = torch.softmax(scores, dim=-1) |
|
|
|
p_attn = self.dropout(self.attn) |
|
x = torch.matmul(p_attn, value) |
|
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)) |
|
|
|
return self.linear_out(x) |
|
|
|
def forward(self, query, key, value, mask): |
|
""" |
|
Compute scaled dot product attention. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
""" |
|
q, k, v = self.forward_qkv(query, key, value) |
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) |
|
return self.forward_attention(v, scores, mask) |
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention): |
|
""" |
|
Multi-Head Attention layer with relative position encoding. |
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
Paper: https://arxiv.org/abs/1901.02860 |
|
Args: |
|
n_head (int): The number of heads. |
|
n_feat (int): The number of features. |
|
dropout_rate (float): Dropout rate. |
|
zero_triu (bool): Whether to zero the upper triangular part of attention matrix. |
|
""" |
|
|
|
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False): |
|
"""Construct an RelPositionMultiHeadedAttention object.""" |
|
super().__init__(n_head, n_feat, dropout_rate) |
|
self.zero_triu = zero_triu |
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) |
|
|
|
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
torch.nn.init.xavier_uniform_(self.pos_bias_u) |
|
torch.nn.init.xavier_uniform_(self.pos_bias_v) |
|
|
|
def rel_shift(self, x): |
|
""" |
|
Compute relative positional encoding. |
|
Args: |
|
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). |
|
time1 means the length of query vector. |
|
Returns: |
|
torch.Tensor: Output tensor. |
|
""" |
|
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) |
|
x_padded = torch.cat([zero_pad, x], dim=-1) |
|
|
|
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) |
|
x = x_padded[:, :, 1:].view_as(x)[:, :, :, : x.size(-1) // 2 + 1] |
|
|
|
if self.zero_triu: |
|
ones = torch.ones((x.size(2), x.size(3)), device=x.device) |
|
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] |
|
|
|
return x |
|
|
|
def forward(self, query, key, value, pos_emb, mask): |
|
""" |
|
Compute 'Scaled Dot Product Attention' with rel. positional encoding. |
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
pos_emb (torch.Tensor): Positional embedding tensor |
|
(#batch, 2*time1-1, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2). |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
""" |
|
q, k, v = self.forward_qkv(query, key, value) |
|
q = q.transpose(1, 2) |
|
|
|
n_batch_pos = pos_emb.size(0) |
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) |
|
p = p.transpose(1, 2) |
|
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) |
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) |
|
|
|
|
|
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) |
|
matrix_bd = self.rel_shift(matrix_bd) |
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) |
|
|
|
return self.forward_attention(v, scores, mask) |
|
|
|
|
|
class GuidedAttentionLoss(torch.nn.Module): |
|
""" |
|
Guided attention loss function module. |
|
|
|
This module calculates the guided attention loss described |
|
in `Efficiently Trainable Text-to-Speech System Based |
|
on Deep Convolutional Networks with Guided Attention`_, |
|
which forces the attention to be diagonal. |
|
|
|
.. _`Efficiently Trainable Text-to-Speech System |
|
Based on Deep Convolutional Networks with Guided Attention`: |
|
https://arxiv.org/abs/1710.08969 |
|
""" |
|
|
|
def __init__(self, sigma=0.4, alpha=1.0): |
|
""" |
|
Initialize guided attention loss module. |
|
|
|
Args: |
|
sigma (float, optional): Standard deviation to control |
|
how close attention to a diagonal. |
|
alpha (float, optional): Scaling coefficient (lambda). |
|
reset_always (bool, optional): Whether to always reset masks. |
|
""" |
|
super(GuidedAttentionLoss, self).__init__() |
|
self.sigma = sigma |
|
self.alpha = alpha |
|
self.guided_attn_masks = None |
|
self.masks = None |
|
|
|
def _reset_masks(self): |
|
self.guided_attn_masks = None |
|
self.masks = None |
|
|
|
def forward(self, att_ws, ilens, olens): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
att_ws (Tensor): Batch of attention weights (B, T_max_out, T_max_in). |
|
ilens (LongTensor): Batch of input lenghts (B,). |
|
olens (LongTensor): Batch of output lenghts (B,). |
|
|
|
Returns: |
|
Tensor: Guided attention loss value. |
|
""" |
|
self._reset_masks() |
|
self.guided_attn_masks = self._make_guided_attention_masks(ilens, olens).to(att_ws.device) |
|
self.masks = self._make_masks(ilens, olens).to(att_ws.device) |
|
losses = self.guided_attn_masks * att_ws |
|
loss = torch.mean(losses.masked_select(self.masks)) |
|
self._reset_masks() |
|
return self.alpha * loss |
|
|
|
def _make_guided_attention_masks(self, ilens, olens): |
|
n_batches = len(ilens) |
|
max_ilen = max(ilens) |
|
max_olen = max(olens) |
|
guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen), device=ilens.device) |
|
for idx, (ilen, olen) in enumerate(zip(ilens, olens)): |
|
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma) |
|
return guided_attn_masks |
|
|
|
@staticmethod |
|
def _make_guided_attention_mask(ilen, olen, sigma): |
|
""" |
|
Make guided attention mask. |
|
""" |
|
grid_x, grid_y = torch.meshgrid(torch.arange(olen, device=olen.device).float(), torch.arange(ilen, device=ilen.device).float()) |
|
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma ** 2))) |
|
|
|
@staticmethod |
|
def _make_masks(ilens, olens): |
|
""" |
|
Make masks indicating non-padded part. |
|
|
|
Args: |
|
ilens (LongTensor or List): Batch of lengths (B,). |
|
olens (LongTensor or List): Batch of lengths (B,). |
|
|
|
Returns: |
|
Tensor: Mask tensor indicating non-padded part. |
|
dtype=torch.uint8 in PyTorch 1.2- |
|
dtype=torch.bool in PyTorch 1.2+ (including 1.2) |
|
""" |
|
in_masks = make_non_pad_mask(ilens, device=ilens.device) |
|
out_masks = make_non_pad_mask(olens, device=olens.device) |
|
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) |
|
|
|
|
|
class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss): |
|
""" |
|
Guided attention loss function module for multi head attention. |
|
|
|
Args: |
|
sigma (float, optional): Standard deviation to control |
|
how close attention to a diagonal. |
|
alpha (float, optional): Scaling coefficient (lambda). |
|
reset_always (bool, optional): Whether to always reset masks. |
|
""" |
|
|
|
def forward(self, att_ws, ilens, olens): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
att_ws (Tensor): |
|
Batch of multi head attention weights (B, H, T_max_out, T_max_in). |
|
ilens (LongTensor): Batch of input lenghts (B,). |
|
olens (LongTensor): Batch of output lenghts (B,). |
|
|
|
Returns: |
|
Tensor: Guided attention loss value. |
|
""" |
|
if self.guided_attn_masks is None: |
|
self.guided_attn_masks = (self._make_guided_attention_masks(ilens, olens).to(att_ws.device).unsqueeze(1)) |
|
if self.masks is None: |
|
self.masks = self._make_masks(ilens, olens).to(att_ws.device).unsqueeze(1) |
|
losses = self.guided_attn_masks * att_ws |
|
loss = torch.mean(losses.masked_select(self.masks)) |
|
if self.reset_always: |
|
self._reset_masks() |
|
|
|
return self.alpha * loss |
|
|