Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0")
|
| 7 |
+
|
| 8 |
+
def predict_teacher_course(feedback):
|
| 9 |
+
sequence_to_classify = feedback
|
| 10 |
+
candidate_labels = ["teacher", "course"]
|
| 11 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
| 12 |
+
return str(output['labels'][0])
|
| 13 |
+
|
| 14 |
+
def predict_sentiment(feedback):
|
| 15 |
+
sequence_to_classify = feedback
|
| 16 |
+
candidate_labels = ["positive", "negative", "neutral"]
|
| 17 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
| 18 |
+
return str(output['labels'][0])
|
| 19 |
+
|
| 20 |
+
def predict_teacher_aspect(feedback):
|
| 21 |
+
sequence_to_classify = feedback
|
| 22 |
+
candidate_labels = ['general', 'teaching skills', 'behaviour', 'knowledge', 'experience', 'assessment']
|
| 23 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
| 24 |
+
return str(output['labels'][0])
|
| 25 |
+
|
| 26 |
+
def predict_course_aspect(feedback):
|
| 27 |
+
sequence_to_classify = feedback
|
| 28 |
+
candidate_labels = ['relevancy', 'general', 'content', 'learning material', 'pace']
|
| 29 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
| 30 |
+
return str(output['labels'][0])
|
| 31 |
+
|
| 32 |
+
# Streamlit app layout
|
| 33 |
+
st.set_page_config(page_title="Aspect-based Sentiment Anlaysis of Student Feedback", layout="centered", initial_sidebar_state="auto")
|
| 34 |
+
|
| 35 |
+
st.markdown("""
|
| 36 |
+
#### This application analyzes the student feedback to determine whether it is about a teacher or a course, detects sentiment, and identifies important teacher or course aspects.
|
| 37 |
+
""")
|
| 38 |
+
|
| 39 |
+
# Get user input
|
| 40 |
+
user_input = st.text_area("Enter the feedback or comments for analysis:", height=200)
|
| 41 |
+
|
| 42 |
+
if st.button("Analyze Text"):
|
| 43 |
+
if user_input.strip():
|
| 44 |
+
# Predict whether it's about teacher or course
|
| 45 |
+
type_result = predict_teacher_course(user_input)
|
| 46 |
+
sentiment_result = predict_sentiment(user_input)
|
| 47 |
+
if type_result == 'teacher':
|
| 48 |
+
aspect_result = predict_teacher_aspect(user_input)
|
| 49 |
+
else:
|
| 50 |
+
aspect_result = predict_course_aspect(user_input)
|
| 51 |
+
|
| 52 |
+
# Display the results in a nice way
|
| 53 |
+
st.subheader("Analysis Results")
|
| 54 |
+
|
| 55 |
+
st.markdown(f"**Type:** `{type_result}`")
|
| 56 |
+
|
| 57 |
+
st.markdown(f"**Sentiment:** `{sentiment_result}`")
|
| 58 |
+
|
| 59 |
+
st.write(f"**Aspect:** `{aspect_result}`")
|
| 60 |
+
else:
|
| 61 |
+
st.error("Please enter some text for analysis.")
|
| 62 |
+
|
| 63 |
+
# Add a footer
|
| 64 |
+
st.markdown("---")
|
| 65 |
+
st.markdown("**Developed by Sarang Shaikh**")
|
| 66 |
+
st.markdown("""
|
| 67 |
+
Feel free to reach out for more information or suggestions!
|
| 68 |
+
""")
|