Sanzana Lora
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
6 |
+
|
7 |
+
# Load the mT5 model and tokenizer
|
8 |
+
model_name = "csebuetnlp/mT5_m2m_crossSum"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
get_lang_id = lambda lang: tokenizer._convert_token_to_id(
|
13 |
+
model.config.task_specific_params["langid_map"][lang][1]
|
14 |
+
)
|
15 |
+
|
16 |
+
# Function for cross-lingual summarization
|
17 |
+
def cross_lingual_summarization(source_language, target_language, article_text):
|
18 |
+
input_ids = tokenizer(
|
19 |
+
[WHITESPACE_HANDLER(article_text)],
|
20 |
+
return_tensors="pt",
|
21 |
+
padding="max_length",
|
22 |
+
truncation=True,
|
23 |
+
max_length=512
|
24 |
+
)["input_ids"]
|
25 |
+
|
26 |
+
output_ids = model.generate(
|
27 |
+
input_ids=input_ids,
|
28 |
+
decoder_start_token_id=get_lang_id(target_language),
|
29 |
+
max_length=84,
|
30 |
+
no_repeat_ngram_size=2,
|
31 |
+
num_beams=4,
|
32 |
+
)[0]
|
33 |
+
|
34 |
+
summary = tokenizer.decode(
|
35 |
+
output_ids,
|
36 |
+
skip_special_tokens=True,
|
37 |
+
clean_up_tokenization_spaces=False
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
return {
|
42 |
+
'source_language': source_language,
|
43 |
+
'target_language': target_language,
|
44 |
+
'original_article': article_text,
|
45 |
+
'summary': summary
|
46 |
+
}
|
47 |
+
|
48 |
+
# Gradio Interface
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=cross_lingual_summarization,
|
51 |
+
inputs=[
|
52 |
+
gr.Dropdown(['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional',
|
53 |
+
'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi',
|
54 |
+
'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese',
|
55 |
+
'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali',
|
56 |
+
'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek',
|
57 |
+
'vietnamese', 'welsh', 'yoruba'], label='Source Language'),
|
58 |
+
gr.Dropdown(['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional',
|
59 |
+
'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi',
|
60 |
+
'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese',
|
61 |
+
'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali',
|
62 |
+
'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek',
|
63 |
+
'vietnamese', 'welsh', 'yoruba'], label='Target Language'),
|
64 |
+
gr.Textbox(label='Article Text')
|
65 |
+
],
|
66 |
+
outputs=[
|
67 |
+
gr.Textbox(label='Original Article'),
|
68 |
+
gr.Textbox(label='Summary')
|
69 |
+
],
|
70 |
+
live=False,
|
71 |
+
title="Cross-Lingual Summarization"
|
72 |
+
)
|
73 |
+
|
74 |
+
# Launch the Gradio app
|
75 |
+
iface.launch(inline=False)
|