Spaces:
Running
Running
Adding app files
Browse files- .gradio/certificate.pem +31 -0
- app.py +144 -0
- requirements.txt +91 -0
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torchvision.transforms as T
|
| 7 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from ultralytics import YOLO
|
| 10 |
+
from transformers import ResNetModel
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
class FlakeLayerClassifier(nn.Module):
|
| 14 |
+
def __init__(self, num_materials, material_dim, num_classes=4, dropout_prob=0.1, freeze_cnn=False):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.cnn = ResNetModel.from_pretrained("microsoft/resnet-18")
|
| 17 |
+
if freeze_cnn:
|
| 18 |
+
for p in self.cnn.parameters():
|
| 19 |
+
p.requires_grad = False
|
| 20 |
+
|
| 21 |
+
img_feat_dim = self.cnn.config.hidden_sizes[-1]
|
| 22 |
+
self.material_embedding = nn.Embedding(num_materials, material_dim)
|
| 23 |
+
self.dropout = nn.Dropout(dropout_prob)
|
| 24 |
+
|
| 25 |
+
self.fc_img = nn.Sequential(
|
| 26 |
+
nn.Linear(img_feat_dim, img_feat_dim),
|
| 27 |
+
nn.ReLU(inplace=True),
|
| 28 |
+
self.dropout,
|
| 29 |
+
nn.Linear(img_feat_dim, num_classes)
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
combined_dim = img_feat_dim + material_dim
|
| 33 |
+
self.fc_comb = nn.Sequential(
|
| 34 |
+
nn.Linear(combined_dim, combined_dim),
|
| 35 |
+
nn.ReLU(inplace=True),
|
| 36 |
+
self.dropout,
|
| 37 |
+
nn.Linear(combined_dim, num_classes)
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def forward(self, pixel_values, material=None):
|
| 41 |
+
outputs = self.cnn(pixel_values=pixel_values)
|
| 42 |
+
img_feats = outputs.pooler_output.view(outputs.pooler_output.size(0), -1)
|
| 43 |
+
|
| 44 |
+
if material is None:
|
| 45 |
+
return self.fc_img(img_feats)
|
| 46 |
+
|
| 47 |
+
mat_emb = self.material_embedding(material)
|
| 48 |
+
combined = torch.cat([img_feats, mat_emb], dim=1)
|
| 49 |
+
return self.fc_comb(combined)
|
| 50 |
+
|
| 51 |
+
def calibration(source_img, target_img):
|
| 52 |
+
source_lab = cv2.cvtColor(source_img, cv2.COLOR_BGR2LAB)
|
| 53 |
+
target_lab = cv2.cvtColor(target_img, cv2.COLOR_BGR2LAB)
|
| 54 |
+
|
| 55 |
+
for i in range(3):
|
| 56 |
+
src_mean, src_std = cv2.meanStdDev(source_lab[:, :, i])
|
| 57 |
+
tgt_mean, tgt_std = cv2.meanStdDev(target_lab[:, :, i])
|
| 58 |
+
|
| 59 |
+
target_lab[:, :, i] = (
|
| 60 |
+
(target_lab[:, :, i] - tgt_mean) * (src_std / tgt_std) + src_mean
|
| 61 |
+
).clip(0, 255)
|
| 62 |
+
|
| 63 |
+
corrected_img = cv2.cvtColor(target_lab, cv2.COLOR_LAB2BGR)
|
| 64 |
+
return corrected_img.astype(np.uint8)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
print(f"Using device: {device}")
|
| 69 |
+
|
| 70 |
+
# Load YOLO detector
|
| 71 |
+
#yolo = YOLO("/home/sankalp/flake_classification/models/best.pt")
|
| 72 |
+
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo11n_synthetic_runs/exp1/weights/best.pt")
|
| 73 |
+
yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo_runs/yolo11l_flake_runs/weights/best.pt")
|
| 74 |
+
yolo.conf = 0.5
|
| 75 |
+
|
| 76 |
+
# Load classifier weights
|
| 77 |
+
ckpt = torch.load(
|
| 78 |
+
"/home/sankalp/flake_classification/models/flake_classifier.pth",
|
| 79 |
+
map_location=device
|
| 80 |
+
)
|
| 81 |
+
num_classes = len(ckpt["class_to_idx"])
|
| 82 |
+
classifier = FlakeLayerClassifier(
|
| 83 |
+
num_materials=num_classes,
|
| 84 |
+
material_dim=64,
|
| 85 |
+
num_classes=num_classes,
|
| 86 |
+
dropout_prob=0.1,
|
| 87 |
+
freeze_cnn=False
|
| 88 |
+
).to(device)
|
| 89 |
+
classifier.load_state_dict(ckpt["model_state_dict"])
|
| 90 |
+
classifier.eval()
|
| 91 |
+
|
| 92 |
+
# Image processing transforms
|
| 93 |
+
clf_tf = T.Compose([
|
| 94 |
+
T.Resize((224, 224)),
|
| 95 |
+
T.ToTensor(),
|
| 96 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 97 |
+
])
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
FONT = ImageFont.truetype("arial.ttf", 20)
|
| 101 |
+
except IOError:
|
| 102 |
+
FONT = ImageFont.load_default()
|
| 103 |
+
|
| 104 |
+
# Inference + drawing
|
| 105 |
+
def detect_and_classify(image: Image.Image):
|
| 106 |
+
#image = calibration(
|
| 107 |
+
# np.array(Image.open("/home/sankalp/gradio_flake_app/quantum-flake-pipeline/template/image.png")),
|
| 108 |
+
#np.array(image.convert("RGB")),
|
| 109 |
+
#)
|
| 110 |
+
#image = Image.fromarray(image)
|
| 111 |
+
img_rgb = np.array(image.convert("RGB"))
|
| 112 |
+
img_bgr = img_rgb[:, :, ::-1]
|
| 113 |
+
results = yolo(img_bgr, device=str(device))
|
| 114 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 115 |
+
scores = results[0].boxes.conf.cpu().numpy()
|
| 116 |
+
|
| 117 |
+
draw = ImageDraw.Draw(image)
|
| 118 |
+
for (x1, y1, x2, y2), conf in zip(boxes, scores):
|
| 119 |
+
crop = image.crop((x1, y1, x2, y2))
|
| 120 |
+
inp = clf_tf(crop).unsqueeze(0).to(device) # (1,C,H,W)
|
| 121 |
+
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
logits = classifier(pixel_values=inp)
|
| 124 |
+
pred = logits.argmax(1).item()
|
| 125 |
+
prob = F.softmax(logits, dim=1)[0, pred].item()
|
| 126 |
+
|
| 127 |
+
label = f"Layer {pred+1} ({prob:.2f})"
|
| 128 |
+
# draw
|
| 129 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
|
| 130 |
+
draw.text((x1, max(0, y1-18)), label, fill="red", font=FONT)
|
| 131 |
+
|
| 132 |
+
return image
|
| 133 |
+
|
| 134 |
+
# Gradio UI
|
| 135 |
+
demo = gr.Interface(
|
| 136 |
+
fn=detect_and_classify,
|
| 137 |
+
inputs=gr.Image(type="pil", label="Upload Flake Image"),
|
| 138 |
+
outputs=gr.Image(type="pil", label="Annotated Output"),
|
| 139 |
+
title="Flake Detection + Layer Classification",
|
| 140 |
+
description="Upload an image → YOLO finds flakes → ResNet-18 head classifies their layer.",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==24.1.0
|
| 2 |
+
annotated-types==0.7.0
|
| 3 |
+
anyio==4.9.0
|
| 4 |
+
certifi==2025.6.15
|
| 5 |
+
charset-normalizer==3.4.2
|
| 6 |
+
click==8.2.1
|
| 7 |
+
contourpy==1.3.2
|
| 8 |
+
cycler==0.12.1
|
| 9 |
+
fastapi==0.115.13
|
| 10 |
+
ffmpy==0.6.0
|
| 11 |
+
filelock==3.18.0
|
| 12 |
+
fonttools==4.58.4
|
| 13 |
+
fsspec==2025.5.1
|
| 14 |
+
gradio==5.34.2
|
| 15 |
+
gradio_client==1.10.3
|
| 16 |
+
groovy==0.1.2
|
| 17 |
+
h11==0.16.0
|
| 18 |
+
hf-xet==1.1.5
|
| 19 |
+
httpcore==1.0.9
|
| 20 |
+
httpx==0.28.1
|
| 21 |
+
huggingface-hub==0.33.1
|
| 22 |
+
idna==3.10
|
| 23 |
+
Jinja2==3.1.6
|
| 24 |
+
kiwisolver==1.4.8
|
| 25 |
+
markdown-it-py==3.0.0
|
| 26 |
+
MarkupSafe==3.0.2
|
| 27 |
+
matplotlib==3.10.3
|
| 28 |
+
mdurl==0.1.2
|
| 29 |
+
mpmath==1.3.0
|
| 30 |
+
networkx==3.5
|
| 31 |
+
numpy==2.3.1
|
| 32 |
+
nvidia-cublas-cu12==12.6.4.1
|
| 33 |
+
nvidia-cuda-cupti-cu12==12.6.80
|
| 34 |
+
nvidia-cuda-nvrtc-cu12==12.6.77
|
| 35 |
+
nvidia-cuda-runtime-cu12==12.6.77
|
| 36 |
+
nvidia-cudnn-cu12==9.5.1.17
|
| 37 |
+
nvidia-cufft-cu12==11.3.0.4
|
| 38 |
+
nvidia-cufile-cu12==1.11.1.6
|
| 39 |
+
nvidia-curand-cu12==10.3.7.77
|
| 40 |
+
nvidia-cusolver-cu12==11.7.1.2
|
| 41 |
+
nvidia-cusparse-cu12==12.5.4.2
|
| 42 |
+
nvidia-cusparselt-cu12==0.6.3
|
| 43 |
+
nvidia-nccl-cu12==2.26.2
|
| 44 |
+
nvidia-nvjitlink-cu12==12.6.85
|
| 45 |
+
nvidia-nvtx-cu12==12.6.77
|
| 46 |
+
opencv-python==4.11.0.86
|
| 47 |
+
orjson==3.10.18
|
| 48 |
+
packaging==25.0
|
| 49 |
+
pandas==2.3.0
|
| 50 |
+
pillow==11.2.1
|
| 51 |
+
psutil==7.0.0
|
| 52 |
+
py-cpuinfo==9.0.0
|
| 53 |
+
pydantic==2.11.7
|
| 54 |
+
pydantic_core==2.33.2
|
| 55 |
+
pydub==0.25.1
|
| 56 |
+
Pygments==2.19.2
|
| 57 |
+
pyparsing==3.2.3
|
| 58 |
+
python-dateutil==2.9.0.post0
|
| 59 |
+
python-multipart==0.0.20
|
| 60 |
+
pytz==2025.2
|
| 61 |
+
PyYAML==6.0.2
|
| 62 |
+
regex==2024.11.6
|
| 63 |
+
requests==2.32.4
|
| 64 |
+
rich==14.0.0
|
| 65 |
+
ruff==0.12.0
|
| 66 |
+
safehttpx==0.1.6
|
| 67 |
+
safetensors==0.5.3
|
| 68 |
+
scipy==1.16.0
|
| 69 |
+
semantic-version==2.10.0
|
| 70 |
+
shellingham==1.5.4
|
| 71 |
+
six==1.17.0
|
| 72 |
+
sniffio==1.3.1
|
| 73 |
+
starlette==0.46.2
|
| 74 |
+
sympy==1.14.0
|
| 75 |
+
tokenizers==0.21.2
|
| 76 |
+
tomlkit==0.13.3
|
| 77 |
+
torch==2.7.1
|
| 78 |
+
torchaudio==2.7.1+cpu
|
| 79 |
+
torchvision==0.22.1
|
| 80 |
+
tqdm==4.67.1
|
| 81 |
+
transformers==4.52.4
|
| 82 |
+
triton==3.3.1
|
| 83 |
+
typer==0.16.0
|
| 84 |
+
typing-inspection==0.4.1
|
| 85 |
+
typing_extensions==4.14.0
|
| 86 |
+
tzdata==2025.2
|
| 87 |
+
ultralytics==8.3.159
|
| 88 |
+
ultralytics-thop==2.0.14
|
| 89 |
+
urllib3==2.5.0
|
| 90 |
+
uvicorn==0.34.3
|
| 91 |
+
websockets==15.0.1
|