Spaces:
Runtime error
Runtime error
Govind
commited on
Commit
·
aa774c1
1
Parent(s):
aa2e117
Add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#import os
|
| 2 |
+
#os.system("bash setup.sh")
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
# import fitz # PyMuPDF for extracting text from PDFs
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.vectorstores import Chroma
|
| 8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
+
from langchain.docstore.document import Document
|
| 10 |
+
from langchain.llms import HuggingFacePipeline
|
| 11 |
+
from langchain.chains import RetrievalQA
|
| 12 |
+
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
| 13 |
+
import torch
|
| 14 |
+
import re
|
| 15 |
+
import transformers
|
| 16 |
+
from torch import bfloat16
|
| 17 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 18 |
+
|
| 19 |
+
# Initialize embeddings and ChromaDB
|
| 20 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
model_kwargs = {"device": device}
|
| 23 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
| 24 |
+
|
| 25 |
+
# loader = DirectoryLoader('./pdf', glob="**/*.pdf", use_multithreading=True)
|
| 26 |
+
loader = DirectoryLoader('./pdf', glob="**/*.pdf", recursive=True, use_multithreading=True)
|
| 27 |
+
docs = loader.load()
|
| 28 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 29 |
+
all_splits = text_splitter.split_documents(docs)
|
| 30 |
+
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="pdf_db")
|
| 31 |
+
books_db = Chroma(persist_directory="./pdf_db", embedding_function=embeddings)
|
| 32 |
+
|
| 33 |
+
books_db_client = books_db.as_retriever()
|
| 34 |
+
|
| 35 |
+
# Initialize the model and tokenizer
|
| 36 |
+
model_name = "stabilityai/stablelm-zephyr-3b"
|
| 37 |
+
|
| 38 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
| 39 |
+
load_in_4bit=True,
|
| 40 |
+
bnb_4bit_quant_type='nf4',
|
| 41 |
+
bnb_4bit_use_double_quant=True,
|
| 42 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
| 46 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
model_name,
|
| 48 |
+
trust_remote_code=True,
|
| 49 |
+
config=model_config,
|
| 50 |
+
quantization_config=bnb_config,
|
| 51 |
+
device_map=device,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
query_pipeline = transformers.pipeline(
|
| 57 |
+
"text-generation",
|
| 58 |
+
model=model,
|
| 59 |
+
tokenizer=tokenizer,
|
| 60 |
+
return_full_text=True,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
device_map=device,
|
| 63 |
+
temperature=0.7,
|
| 64 |
+
top_p=0.9,
|
| 65 |
+
top_k=50,
|
| 66 |
+
max_new_tokens=256
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
llm = HuggingFacePipeline(pipeline=query_pipeline)
|
| 70 |
+
|
| 71 |
+
books_db_client_retriever = RetrievalQA.from_chain_type(
|
| 72 |
+
llm=llm,
|
| 73 |
+
chain_type="stuff",
|
| 74 |
+
retriever=books_db_client,
|
| 75 |
+
verbose=True
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
st.title("RAG System with ChromaDB")
|
| 79 |
+
|
| 80 |
+
if 'messages' not in st.session_state:
|
| 81 |
+
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload PDF files and ask me anything about their content.'}]
|
| 82 |
+
|
| 83 |
+
# Function to retrieve answer using the RAG system
|
| 84 |
+
def test_rag(qa, query):
|
| 85 |
+
return qa.run(query)
|
| 86 |
+
|
| 87 |
+
user_prompt = st.chat_input("Ask me anything about the content of the PDF(s):")
|
| 88 |
+
if user_prompt:
|
| 89 |
+
st.session_state.messages.append({'role': 'user', "content": user_prompt})
|
| 90 |
+
books_retriever = test_rag(books_db_client_retriever, user_prompt)
|
| 91 |
+
# Extracting the relevant answer using regex
|
| 92 |
+
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
|
| 93 |
+
|
| 94 |
+
if corrected_text_match:
|
| 95 |
+
corrected_text_books = corrected_text_match.group(1).strip()
|
| 96 |
+
else:
|
| 97 |
+
corrected_text_books = "No helpful answer found."
|
| 98 |
+
st.session_state.messages.append({'role': 'assistant', "content": corrected_text_books})
|
| 99 |
+
|
| 100 |
+
for message in st.session_state.messages:
|
| 101 |
+
with st.chat_message(message['role']):
|
| 102 |
+
st.write(message['content'])
|