Spaces:
Sleeping
Sleeping
File size: 3,531 Bytes
0a570a7 a1346d7 0a570a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import streamlit as st
import pandas as pd
import os
# Import the TestCaseGenerator
from test_case_generator import TestCaseGenerator
def main():
st.set_page_config(
page_title="Question Generation App",
page_icon="π",
layout="wide"
)
# Custom CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 3em;
color: #2C3E50;
text-align: center;
margin-bottom: 30px;
}
.stButton>button {
background-color: #3498DB;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
transition: all 0.3s;
}
.stButton>button:hover {
background-color: #2980B9;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
# Title
st.markdown("<h1 class='main-title'>π AI Question Generator</h1>", unsafe_allow_html=True)
# Sidebar for inputs
st.sidebar.header("Configuration")
# File uploader
uploaded_file = st.sidebar.file_uploader(
"Upload PDF Document",
type=['pdf'],
help="Please upload a PDF file to generate questions from"
)
# Question type selection
generator = TestCaseGenerator()
question_types = st.sidebar.multiselect(
"Select Question Types",
generator.available_question_types,
default=['hallucination', 'toxicity']
)
# Number of questions
num_questions = st.sidebar.slider(
"Number of Questions per Type",
min_value=1,
max_value=20,
value=5
)
# Generate button
generate_button = st.sidebar.button("Generate Questions", use_container_width=True)
# Main content area
main_content = st.container()
# Generation logic
if generate_button and uploaded_file and question_types:
with st.spinner('Generating questions...'):
# Create results DataFrame
final_df = pd.DataFrame()
# Generate questions for each selected type
for q_type in question_types:
try:
type_df = generator.generate_testcases(
uploaded_file,
question_type=q_type,
num_testcases=num_questions
)
type_df['question_type'] = q_type
final_df = pd.concat([final_df, type_df], ignore_index=True)
except Exception as e:
st.error(f"Error generating {q_type} questions: {e}")
# Display results
if not final_df.empty:
st.success(f"Generated {len(final_df)} questions!")
# Display questions in an interactive table
st.dataframe(
final_df[['question_type', 'question', 'answer']],
use_container_width=True
)
# Download button for Excel
csv = final_df.to_csv(index=False)
st.download_button(
label="Download Questions as CSV",
data=csv,
file_name="generated_questions.csv",
mime="text/csv"
)
else:
st.warning("No questions could be generated. Please check your inputs.")
elif not uploaded_file:
st.info("Please upload a PDF document to start generating questions.")
if __name__ == "__main__":
main() |